Zusammenfassung

Ressourceneffizienzpotenzialanalyse

von

Nutzen statt Besitzen Angeboten

Katrin Bienge
Wuppertal Institut
Impressum

Zusammenfassung - Ressourceneffizienzpotenzialanalyse von Nutzen statt Besitzen Angeboten

Autorin

Katrin Bienge
© Wuppertal Institut 2017

Kontakt

Projektkoordination

Wuppertal Institut für Klima, Umwelt, Energie gGmbH
Martina Schmitt, martina.schmitt@wupperinst.org
Tel. +49 (0)202 / 2492-128

Projektpartner

Faktor 10 Institut für nachhaltiges Wirtschaften gGmbH
Holger Rohn, holger.rohn@f10-institut.org
Tel. +49 (0) 6031 / 791137

Borderstep – Institut für Innovation und Nachhaltigkeit gGmbH
Jens Clausen, clausen@borderstep.de
Tel. +49 (0) 511 / 30059245

Das Projekt wird im Rahmen der Innovations- und Technikanalyse (ITA) durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert (Förderkennzeichen 16/1653).

Gestaltung Deckblatt: VisLab, Wuppertal Institut. Fotos (Cover): Fahrräder: imageegami - Fotolia; Schlüsselübergabe und Gartenarbeitende: Thinkstock
Zusammenfassung

Die vorliegende Zusammenfassung dokumentiert die Ergebnisse der Ressourceneffizienzpotenzialanalysen von 20 Nutzen statt Besitzen-Angeboten. Die ausführlichen Berechnungen sind in drei Materialbänden dokumentiert:

Zusätzlich werden die Ergebnisse der REPAs in Steckbriefen zusammengefasst:

Einleitend werden in Kapitel 1 das Forschungsprojekt und die vorrausgegangene Auswahl der 20 NsB-Angebotsformen dargestellt (basierend auf Clausen 2017, verändert).

Die vorliegende Zusammenfassung stellt zunächst die zugrundeliegende Methodik der Ressourceneffizienzpotenzialanalyse (REPA) dar (Kapitel 2). Die folgenden Kapitel stellen die REPAs der 20 NsB-Angebotsformen dar, gruppiert nach den drei Themenbereichen Individualmobilität, Wohnen & Reisen und Alltagsgegenstände (Kapitel 3). Abschließend werden die Ergebnisse im Überblick dargestellt (Kapitel 4) und es werden erste Schlussfolgerungen gezogen (Kapitel 5).
Inhaltsverzeichnis

Zusammenfassung ... III
Inhaltsverzeichnis ... IV
Abbildungsverzeichnis .. VI
Tabellenverzeichnis ... VI

1 Das Projekt "Nutzen statt Besitzen" ... 7
 1.1 Thema und Ziel des Vorhabens ... 7
 1.2 Vorgehen und Methodik ... 7
 1.3 Auswahl der NsB-Angebotsformen .. 8

2 Forschungsdesign und Methodik der REPA ... 9
 2.1 Allgemeines Vorgehen .. 9
 2.1.1 REPA - Sekundäranalyse und Berechnungen ... 9
 2.1.2 REPA - Expertendialog .. 9
 2.2 Das methodische Vorgehen zur Ressourceneffizienzpotenzialanalyse 9
 2.2.1 Das MIPS-Konzept .. 10
 2.2.2 Schritte der REPA ... 10
 2.2.3 NsB-Ress Bewertungs raster ... 12
 2.3 Überblick über die NsB-Angebotsformen .. 13

3 REPA der NsB-Angebotsformen nach Themenfeldern ... 14
 3.1 Themenfeld Individualmobilität .. 14
 3.1.1 Vorgehensweise ... 14
 3.1.2 Untersuchte NsB-Angebotsformen ... 14
 3.1.3 Berechnung - Materialintensitätsanalyse .. 15
 3.1.4 Potenziale - Carsharing .. 15
 3.1.5 Potenziale - Carpooling (privat) ... 18
 3.1.6 Potenziale - Carpooling (Unternehmen) .. 19
 3.1.7 Potenziale - Intermodale Mobilität ... 19
 3.1.8 Bürgerbus .. 20
 3.1.9 Parkplatzsharing ... 20
 3.2 Themenfeld Wohnen und Reisen ... 21
 3.2.1 Untersuchte NsB-Angebotsformen ... 21
 3.2.2 Berechnung - Cohousing und Wohngemeinschaft 21
 3.2.3 Berechnung - Wohngemeinschaften ... 22
 3.2.4 Potenziale - Wohnen .. 23
 3.2.5 Berechnung - Flatsharing ... 24
 3.2.6 Berechnung - Couchsurfing ... 25
Abbildungsverzeichnis

Abbildung 1: Material- und Treibhausgasintensitäten für einzelne Verkehrsmittel (BG = Besetzungsgrad) .. 15
Abbildung 2: Modalsplit für das Basisszenario sowie Szenario A und B (nach Gsell et al., 2015) 16
Abbildung 3: REPA Ergebnisse für Carsharing – stationär ... 18
Abbildung 4: Änderung von Material Footprint und Carbon Footprint durch Autofahrer und Zugfahrer durch Carpooling ... 18
Abbildung 4: REPA Ergebnisse für Carpooling im Pendelverkehr ... 19
Abbildung 5: REPA Ergebnisse für Cohousing und Wohngemeinschaft ... 23
Abbildung 6: REPA Ergebnisse für Flatsharing und Couchsurfing ... 25
Abbildung 7: Material Footprint - Vergleich verschiedener Anreiseoptionen und Aufenthaltsdauer............. 27
Abbildung 8: Ressourcenpotenziale für Szenario A und B im zeitlichen Verlauf von 2015 bis 2030 28
Abbildung 9: Material Footprint Second Hand Online ... 31
Abbildung 10: Carbon Footprint Second Hand Online .. 32
Abbildung 11: Material Footprint Second Hand Laden .. 33
Abbildung 12: Carbon Footprint Second Hand Laden .. 34
Abbildung 13: Material Footprint Nachbarschaftliches Tauschen ... 35
Abbildung 14: Carbon Footprint Nachbarschaftliches Tauschen ... 35
Abbildung 15: Material und Carbon Footprint Werkzeugnutzung ... 36
Abbildung 16: Material und Carbon Footprint Bücher .. 37

Tabellenverzeichnis

Tabelle 1: Allgemeines Bewertungsraster der REPA ... 12
Tabelle 2: Überblick über die Ausprägungen der untersuchten NsB-Angebotsformen 13
Tabelle 3: Untersuchte NsB-Angebotsformen - Mobilität ... 14
1 Das Projekt "Nutzen statt Besitzen: Ressourceneffizienz- und Diffusionspotenziale neuer Nutzungsformen"

1.1 Thema und Ziel des Vorhabens

1.2 Vorgehen und Methodik

Zu Beginn des Projektes erfolgte eine Bestandsaufnahme der aktuell am Markt bestehenden NsB-Angebotsformen (AP1). Diese wurden anhand spezifischer Kriterien bewertet und im Expertenkreis evaluiert. Als Ergebnis wurde eine in Bezug auf mögliche Ressourcenschonungs- und Diffusionspotenziale priorisierte Shortlist von 20 NsB-Angebotsformen aus drei prioritär eingestuften Themenfeldern „Verkehr“, „Wohnen und Reisen“ und „Alltagsgegenstände“ erstellt:

- **Individualmobilität**: Carsharing, Online-Mitfahrgelegenheiten (Carpooling), Fahrgemeinschaftsvermittlung von Unternehmen, Intermodale Mobilität, Bürgerbus, Parkplatzsharing.
- **Wohnen und Reisen**: Wohngemeinschaften und Unter vermietung, Gemeinschaftseigentum und Cohousing in Mietwohnungen, Couchsurfing, Flatsharing, Haustausch.
- **Alltagsgegenstände**: Öffentliche Bücherschränke, Digitaler Download von Medien, Stationärer Second Hand Handel für Waren des privaten Bedarf, Online Second Hand Handel für Waren des privaten Bedarfs, Werkzeugvermietung, Umsonstläden (inkl. Leihläden), Regionale Tauschringe, Tauschplattformen in Internet, Gemeinschaftsgärten.

Die NsB-Angebotsformen der Shortlist wurden unter Berücksichtigung der gesamten Wertschöpfungskette hinsichtlich ihrer Ressourceneffizienzpotenziale analysiert (AP2). Die gewonnenen Erkenntnisse zum Ressourcenverbrauch wurden einschließlich möglicher Reboundeffekte in Steckbriefen dokumentiert.

Parallel erfolgt die Identifikation von Erfolgsfaktoren für die Diffusion ressourcenleichter NsB-Angebotsformen (AP3). Dabei wurden die ausgewählten 20 Angebotsformen hinsichtlich der Verbreitung (Geschwindigkeit, Umfang) in der Innovations- und Markteinführungsphase untersucht. Die Daten wurden ex-post erhoben, um charakteristische Diffusionsverläufe und Einflussmöglichkeiten zu identifizieren.

Auf der Grundlage der Analyseergebnisse werden anschließend vier bis sechs Angebotsformen ausgewählt und vertiefende Fallstudien durchgeführt (AP4). In diesem Prozess werden Vertreter/-innen relevanter Akteursgruppen im Rahmen von Fokusgruppen und Experteninterviews.
eingebunden. Abschließend werden die gewonnenen Erkenntnisse synthetisiert und Handlungsempfehlungen abgeleitet (AP5).

Ziel des Projektes ist die Ableitung von fallbezogenen und übergreifenden Handlungsempfehlungen, um die ermittelten Ressourceneffizienzpotenziale nutzbar zu machen und die Diffusion von rossourcenschonenden NsB-Angebotsformen zu unterstützen. Die Ergebnisse werden über unterschiedliche Medien und Foren (z.B. Broschüre, Fachartikel, Buch, Konferenzen) vorgestellt und veröffentlicht.

1.3 Auswahl der NsB-Angebotsformen

Im Rahmen der Bestandsaufnahme (AP1) wurden gut 100 unterschiedliche Nutzen statt Besitzen-Angebotsformen identifiziert („Longlist“). Diese Inventarliste von NsB-Angebotsformen wurde im weiteren Arbeitsprozess in die Themenfelder „Individualmobilität“, „Wohnen“, „Alltagsgegenstände“, „Lebensmittel“ und „Querschnittsthemen“ strukturiert und im Hinblick auf deren mögliche Ressourceneffizienz- und Diffusionspotenziale sowie soziale und gesellschaftliche Relevanz priorisiert.

Die finale Shortlist, bestehend aus den zuvor genannten 21 NsB-Angebotsformen, wurde im weiteren Projektverlauf auf deren Ressourceneffizienzpotenziale sowie Diffusionspfade hin untersucht und bewertet.

Die vorliegende Zusammenfassung stellt die Ergebnisse der Ressourceneffizienzpotenzialanalyse (AP2) dar.
2 Forschungsdesign und Methodik der REPA

Die Analysen gehen den folgenden Forschungsfragen nach:

1. In welchen Bereichen der Wertschöpfungskette von unterschiedlichen NsB-Angebotsformen finden sich welche Ressourceneffizienzpotenziale und welche Risiken, z.B. Reboundeffekte?
2. Welche spezifischen ökologischen Chancen und Risiken lassen sich für einzelne ausgewählte NsB-Angebotsformen identifizieren?

2.1 Allgemeines Vorgehen

2.1.1 REPA - Sekundäranalyse und Berechnungen

Bei der quantitativen Analyse der Ressourceneffizienzpotenziale kann es zu Einschränkungen bei der rechnerischen Ermittlung des Ressourcenverbrauchs von NsB-Angebotsformen kommen, insbesondere wenn Annahmen zu Referenzsystemen und Daten zu NsB-Formen fehlen, die sich in einem frühen Stadium der Innovation und Diffusion befinden. Alternativ wurde in diesen Fällen eine qualitative Analyse und Bewertung vorgenommen (vgl. Bienge et al. 2010).

2.1.2 REPA – Expertendialog

2.2 Das methodische Vorgehen zur Ressourceneffizienzpotenzialanalyse

- Im Rahmen der REPA wird eine kriteriengestützte Bewertung vorgenommen.
- Die Analyse bietet die Möglichkeit der quantitativen Abschätzung der Ressourceneffizienzpotenziale unter Beachtung von Rebound effekten.

Die Potenzialanalyse erfolgt auf der Grundlage des MIPS-Konzepts, das den lebenszyklusweiten Materialinput pro Serviceeinheit beschreibt.

Es wird der Ressourcenverbrauch einer NsB-Angebotsform ermittelt und mit einem Referenzsystem verglichen bzw. die Angebotsformen und ihre Merkmale miteinander verglichen.

Weitere Umweltwirkungen und gesellschaftliche Aspekte (z.B. Emissionen, Gesundheitsrisiken u.a.) können einbezogen werden (z.T. auch qualitativ).

2.2.1 Das MIPS-Konzept

MIPS bezieht den lebenszyklusweiten Einsatz natürlicher materieller Ressourcen (Material Input) auf einen bestimmten Nutzen (Service). Um den Naturverbrauch bestmöglich zu reduzieren, muss der Material Input bei gesteigertem Nutzen sinken.

\[
MIPS = \frac{MI}{S} = \frac{Material\ Input}{Service\ Einheit}
\]

2.2.2 Schritte der REPA

Schritt 1: Definition von Ziel und Service-Einheit

Schritt 2: Systemgrenzen

Zur Definition der Systemgrenzen werden die zu betrachtenden Abschnitte der Wertschöpfungskette festgelegt und die darin enthaltenen Prozesse abgebildet. Es sollten im Idealfall alle Prozesse dargestellt werden, die zur Herstellung, Nutzung und Entsorgung des betrachteten Produkts oder zur Erfüllung einer Dienstleistung notwendig sind.

Schritt 3: Datenerhebung für die identifizierten Prozesse

In diesem Schritt werden Stoffströme (Material- und Energieflüsse), die innerhalb der identifizierten Prozesse anfallen, zusammengetragen. Für jeden Prozess werden die notwendigen Daten (Stoffinventare) erhoben und dokumentiert, zusammen mit Quellen, Bezugsjahr, Erläuterungen. Bei Abschätzungen, Annahmen oder inkonsistenten bzw. veralteten Literaturwerten empfiehlt es sich, die Werte durch Expertenbefragung zu validieren.

Schritt 4: Berechnung von MIPS

Die Berechnungen können auch für die Analyse weiterer Umweltwirkungen genutzt werden, wie z. B. das Treibhauspotenzial. Die im Projekt angewendeten Bewertungskriterien werden im nachfolgenden Abschnitt dargestellt.

Schritt 5: Potenzialanalyse

Schritt 6: Sensitivitätsanalyse

Für Parameter, die entscheidend die Ergebniswerte beeinflussen (z. B. Transportleistungen, Strommix) und / oder Werte, die nur durch grobe Abschätzung ermittelt werden konnten gilt es, eine

Schritt 7: Dokumentation des Vorgehens und Interpretation der Ergebnisse

2.2.3 NsB-Ress Bewertungs raster

Die Kriterien 4-7 werden im Rahmen der Diffusionsanalyse bewertet und sind damit nicht Teil dieser Untersuchungen.

Tabelle 1: Allgemeines Bewertungsraster der REPA

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Kriterium - möglichst quantitativ</th>
<th>Kriterium - qualitativ</th>
</tr>
</thead>
</table>
Technische Realisierbarkeit
Wirtschaftlichkeit
Technologische Kompetenz in Deutschland vorhanden
Akzeptanz (Markt, Gesellschaft) |
| 2 | **Ressourceneffizienzpotenzial** in Bezug auf, z. B.:
Abiotischer Materialbedarf (MF ab)
Biotischer Materialbedarf (MF bi) | **Wirtschaftliche Bedeutung**, z. B.
Marktpotenzial
Innovationsgrad
Exportrelevanz
Internationale Bedeutung
Gesellschaftliche Trends berücksichtigend (z. B. Demografie)
Abhängigkeit von endlichen natürlichen Ressourcen |
| 3 | **Sonstige Umweltauswirkungen**, z. B.:
Treibhauspotenzial (CF)
Flächenverbrauch (Fläche) | **Kommunizierbarkeit**, z. B.
Öffentlichkeitswirksamkeit
Schnelle Erfolge versprechend
Leicht verständlich
Rolle in der politischen Agenda |
| 4 | | **Übertragbarkeit**, z. B.
Übertragbarkeit auf andere Handlungsfelder
Internationale Übertragbarkeit |

Quelle: Rohn et al. 2009 (MaRess, abgewandelt)
2.3 Überblick über die NsB-Angebotsformen

Tabelle 2 stellt die 20 analysierten NsB-Angebotsformen mit ihren Bezügen zu Bedarfsfeldern, der wesentlichen Nutzen statt Besitzen-Strategie (Nutzungsduerlängung, /-intensivierung) sowie beteiligte Akteure im Überblick dar.

Tabelle 2: Überblick über die Ausprägungen der untersuchten NsB-Angebotsformen

<table>
<thead>
<tr>
<th>Themenfeld</th>
<th>NsB-Angebotsform</th>
<th>Bedarfsfelder/-</th>
<th>NsB-Strategie</th>
<th>Beteiligte Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnen & Reisen</td>
<td>Wohngemeinschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohousing - Gemeinschaftsräume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flatsharing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couchsurfing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wohnungstausch / Haustausch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualmobilität</td>
<td>flexibles und stationäres Carsharing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpooling (privat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpooling (Unternehmen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermodale Mobilität</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parkplatzsharing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bürgerbus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alltagsgegenstände</td>
<td>2nd Hand (stationär)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Umsonstläden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verleih / Vermietung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd Hand Verkauf (online)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nachbarschaftlicher Austausch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bücherschränke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digitaler Download von Medien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemeinschaftsgärten</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende

Bedarfsfeld unmittelbar betroffen
Bedarfsfeld mittelbar betroffen
kein unmittelbarer / mittelbarer Zusammenhang (ohne Betrachtung möglicher Reboundeffekte)

Erläuterung Bedarfsfelder (nach Lettenmeier et al. 2014):
• Bauen und Wohnen inkl. Gebäudeinfrastruktur, Energieverwendung (Strom, Wärme) für Haushalte
• Haushaltsgüter inkl. 12 Produktgruppen Kleidung, Heimtextilien, Möbel, Geräte, Papierprodukte, Schmuck, Geschirr, Werkzeug, Spielzeug und Freizeitausstattung, Verbrauchsgüter des täglichen Bedarfs, andere Güter
• Mobilität inkl. Verkehrsmittel für Alltags- und Freizeitmobilität
• Freizeitaktivitäten inkl. Sport, Kultur (aktiv, Besuch)
• Ernährung inkl. Lebensmittel und Getränke
• Andere Zwecke z.B. Unterkunft auf Reisen; ohne öffentliche Infrastruktur für Gesundheit / Pflege / Bildung
3 REPA der NsB-Angebotsformen nach Themenfeldern

Im Folgenden werden die Ergebnisse der Ressourceneffizienzpotenzialanalysen zusammenfassend nach Themenfeldern dargestellt.

3.1 Themenfeld Individualmobilität

3.1.1 Vorgehensweise

Zur Berechnung werden dabei die Materialintensitäten der einzelnen Verkehrsträger ermittelt und diese mit dem Modal Split (2008) verbunden. Der Untersuchungsrahmen ist jeweils die komplette Personenmobilität in Deutschland mit Ausnahme des Fliegens und der Schifffahrt. Der Status Quo kann dabei über aktuelle Statistiken des deutschen Verkehrs ermittelt werden (infas & DLR, 2010). Die Szenarien für die Potenzialberechnungen wurden entweder aus bisherigen Studien entnommen (Carsharing) oder selbst entwickelt (Carpooling (privat) und Carpooling (Unternehmen)). Für den Bürgerbus und das Parkplatzsharing haben sich entweder keine sinnvollen Szenarien entwickeln lassen, oder der zu erwartende Verbreitungsgrad ist zu gering, um eine quantitative Analyse durchzuführen. In diesen Fällen wird eine qualitative Untersuchung vorgenommen.

3.1.2 Untersuchte NsB-Angebotsformen

<table>
<thead>
<tr>
<th>Themenfeld</th>
<th>Referenz</th>
<th>Moobilitätsformen</th>
<th>NsB-Angebotsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilität</td>
<td>Modal Split (2008)</td>
<td>Carsharing stationär und flexibel</td>
<td>Carpooling privat, Carpooling Unternehmung, Intermodal e Mobilität, Parkplatzsharing, Bürgerbus</td>
</tr>
</tbody>
</table>
3.1.3 Berechnung - Materialintensitätsanalyse

Die Berechnungsgrundlage für die einzelnen NsB-Angebotsformen im Bereich Mobilität sind die Material- und Treibhausgasintensitäten der einzelnen Verkehrsmittel. Abbildung 1 zeigt eine Übersicht, welche auf Daten der Lebenszyklusdatenbank ecoinvent 2.2 beruht. Dabei ist zu sehen, dass ein PKW ohne Mitfahrer (Besetzungsgrad/BG = 1) sowohl den höchsten Rohstoffaufwand, als auch die meisten Treibhausgasemissionen pro Personenkilometer verursacht. Auch der durchschnittlich besetzte PKW (BG = 1,5) und die beiden Carsharing-Angebote mit selbem BG weisen ein deutlich höheres Treibhauspotential auf, als alle untersuchten NsB-Alternativen. Betrachtet man den Rohstoffaufwand, ergeben sich besonders hohe Werte für die Straßenbahn und den Zug, aber auch den PKW inkl. Carsharing. Ressourcenleicht hingegen ist der Linienbus, ein stark besetzter PKW (Carpoolingdurchschnitt: BG = 2,8), der Fernbus und das Fahrrad. Den zu Fuß zurück gelegten Wegen wird vereinfachend kein ökologischer Rucksack zugerechnet.

In weiteren Berechnungen für die jeweiligen NsB-Angebotsformen werden diese Materialintensitäten mit dem Modal Split kombiniert, um Ergebnisse für die entsprechenden Szenarien zu erhalten.

Abbildung 1: Material- und Treibhausgasintensitäten für einzelne Verkehrsmittel (BG = Besetzungsgrad)

3.1.4 Potenziale - Carsharing

Carsharing ist eine der bekanntesten Angebotsformen der Sharing Economy (TNS Emnid und Verbraucherzentrale, 2015) und in den letzten Jahren stark gewachsen. So stieg im Jahr 2015 die Anzahl der registrierten Nutzer beim stationären Carsharing auf 430.000 (+ 13,2 %) und bei stationsunabhängig („free floating“) auf 830.000 (+ 25,8 %) (Bundesverband CarSharing, 2016). Bei stationärem Carsharing werden die Autos an festen Stellen angeboten und müssen nach Ende der Nutzung an derselben Stelle wieder abgestellt werden. Beim free floating Carsharing hingegen sind die Autos nur an ein Gebiet (zum Beispiel eine Stadt) gebunden, und können nach der Nutzung auf jedem frei zugänglichem Parkplatz abgestellt werden. Im Onlineportal werden die Positionen automatisch angezeigt, damit nachfolgende Nutzer Autos in ihrer Nähe lokalisieren können. Die Autos besitzen einen von außen erreichbaren Scanner, welcher Mitgliedskarten erkennt und sich darüber öffnen und starten lässt. Bei beiden Modellen steht eine Firma dahinter, die verantwortlich für den Fuhrpark und um die Vermittlung der Autos ist (Business-to-Consumer).
Da Carsharing nicht nur Auswirkungen auf eine entsprechende Pkw-Fahrt hat, sondern zu Änderungen im gesamten Modal Split führt, wird die gesamte Mobilität, Individualverkehr und öffentlicher Verkehr (ÖV), in Deutschland betrachtet (exklusive Flugzeug). Vor allem kommt es zu Wechselwirkungen zwischen Carsharing und dem ÖV. In den zwei betrachteten Szenarien wird der Grad der Unterstützung von Carsharing durch die Anbindung an den ÖV unterschieden.

Abbildung 2: Modalsplit für das Basisszenario sowie Szenario A und B (nach Gsell et al., 2015)

Für stationäres und free floating Carsharing gelten im Allgemeinen die gleichen Annahmen und Verbreitungsgrade. Eine Ausnahme ist die Fahrzeuggröße, welche beim free floating Carsharing kleiner ist. Es wurden zwei Nutzungsszenarien berücksichtigt (siehe Abbildung 2).

Szenario B: Carsharing wird von öffentlicher Seite nicht speziell unterstützt, wodurch der Anteil am Modal Split nur 0,7 % beträgt. Der Anteil des ÖV nimmt dagegen um 0,7 % ab.

Erläuterungen zu den Szenarien

Im Szenario A werden stark veränderte politische Rahmenbedingungen und eine Förderung multimodalern Verkehrsverhaltens zugrunde gelegt, die eine umweltfreundliche Mobilität zum Ziel haben. Dafür sollen nicht nur Carsharing-Systeme ausgebaut werden, sondern auch der öffentliche Verkehr, sowie Fuß- und Radwege. Zentral dabei ist die Vernetzung zwischen verschiedenen Verkehrsmitteln, sowohl digital (einheitliche Tickets und Apps), als auch durch Mobilitätszentralen in denen einfach zwischen Carsharing, Bikesharing und ÖPNV gewechselt werden kann. Außerdem sollen im öffentlichen Raum Parkraum für Carsharing, insbesondere an Haltestellen des ÖPNV geschaffen werden, um somit attraktiver als der motorisierte Individualverkehr (MIV) zu sein. Somit verändern sich die Präferenzen am Modal Split potentieller Carsharing Nutzer.

Die Ergebnisse des stationären Carsharings sind in Abbildung 3 dargestellt.

In Szenario A sinkt der MF für die Mobilität in Deutschland um 1 %. Dies entspricht ca. 5 Mrd. kg Rohstoffe. Für Szenario B sind keine relevanten Abweichungen festzustellen. Unterschiede zwischen free floating und stationärem Carsharing durch die veränderte Fahrzeuggröße sind vernachlässigbar, da hauptsächlich die Veränderung des Anteils des ÖV verantwortlich für Änderungen im Materialaufwand ist.

In Szenario A sinkt der CF um ca. 3,6 %, was Einsparungen von 6,6 Mrd. kg CO₂-Äquivalenten entspricht. In Szenario B steigt der CF um 0,26 % aufgrund der Verdrängung des ÖV durch Carsharing. Dies entspricht einem zusätzlichen Ausstoß von 470 Millionen kg CO₂-Äquivalenten. Unterschiede zwischen stationärem und free floating Carsharing sind beim CF nicht nachzuweisen.
Das Ressourceneffizienzpotenzial von Carsharing zeigt sich derzeit nur unter der Annahme einer gezielten Carsharing-Förderung im Szenario A und beim untersuchten Angebot des stationären Carsharing und unter der Annahme, dass eine Nutzung von Carsharing-Angeboten mit einer erhöhten ÖV Nutzung einhergeht. Der Vorteil liegt also nicht in der Fahrt im Carsharing Auto selbst, sondern bei den Strecken, die stattdessen mehr mit Linien- und Fernbussen gefahren werden. Somit ist Carsharing ein Baustein in der intermodalen Mobilität, welche gegenüber reinen PKW Fahrten Vorteile aufgrund des höheren ÖV-Anteils aufweist.

3.1.5 Potenziale - Carpooling (privat)

Beim privaten Carpooling (auch ridesharing) bieten Fahrer freie Plätze in ihren PKW auf festgelegten Strecken an, um den Besetzungsgrad zu erhöhen und die Kosten zu teilen. Angeboten werden meist überregionale Strecken, wodurch Carpooling in Konkurrenz mit der Bahn, dem Fernbus und dem privat PKW (Mitfahrer statt Fahrer) steht.

Abbildung 4 zeigt die zusammengefassten Ergebnisse für Carpooling, welche die Verdrängung von klassischen Autofahrten und von Zugfahrten beinhalten. In Szenario A sinkt der Material Footprint um 0,5 % und der Carbon Footprint um 0,4 %. In Szenario B sinken die Werte um 1,5 % (Material Footprint) und 1,2 % (Carbon Footprint). Insgesamt ist der Einfluss von Carpooling auf den Material Footprint leicht höher als auf den Carbon Footprint.
3.1.6 Potenziale - Carpooling (Unternehmen)

Beim Carpooling für Unternehmen werden gezielt Pendler angesprochen um Fahrgemeinschaften zu bilden. Diese Gemeinschaften treffen sich regelmäßig für den Arbeitsweg. Das ganze Konzept kann von Firmen initiiert und teilweise organisiert werden, z.B. durch das Anbieten und Bewerben der richtigen Vermittlerplattform und die Bereitstellung von Parkplätzen nur für Carpooling-Teilnehmer. Der Berufsverkehr hat mit 1,07 den geringsten Besetzungsgrad aller PKW-Strecken im Alltag. Es wird die Annahme übernommen, dass dieser auf langfristig auf 1,26 erhöht werden kann. Dadurch würde sich der allgemeine durchschnittliche Besetzungsgrad eines PKW in Deutschland von aktuell 1,5 auf 1,56 erhöhen.

Für die Potenzialanalysen wird die gesamte Mobilität in Deutschland betrachtet (PKW, öffentlicher Verkehr, Fahrrad, Fußgänger). Für die Berechnung wird aber angenommen, dass sich ausschließlich PKW Fahrer zu Fahrgemeinschaften zusammenschließen. Dabei kommt es zu keinen Verschiebungen im Modal Split.

Der MF für die Mobilität in Deutschland sinkt durch Carpooling im Pendlerverkehr um 3,2 %, was 17 Mrd. kg Rohstoffen entspricht (siehe Abbildung 5). Der CF sinkt unter den getroffenen Annahmen um 3,6 % oder 6,5 Mrd. kg CO₂-Aquivalente. Im genutzten Szenario werden 22,4 Milliarden Fahrzeugkilometer pro Jahr eingespart (siehe Abbildung 5).

![Abbildung 5: REPA Ergebnisse für Carpooling im Pendelverkehr](image)

3.1.7 Potenziale - Intermodale Mobilität

Die intermodale Mobilität beschreibt ein Mobilitätsverhalten, bei dem verschiedene Verkehrsträger innerhalb eines Weges miteinander kombiniert werden. Die Kombinierbarkeit wird sowohl durch die Erreichbarkeit (Fahrradverleih direkt am Bahnhof), als auch durch einheitliche Zahl- und Buchungssysteme erreicht.

Durch die Nähe zur Berechnung von Carsharing, Szenario A wurde keine spezifische Berechnung vorgenommen. Entsprechend ist das Ergebnis in Abbildung 3 dargestellt.

Der Material Footprint für die Mobilität in Deutschland sinkt um 1%. Dies entspricht ca. 5 Mrd. kg Rohstoffe. Durch eine starke Nutzung von Leihrädern auf Kurzstrecken statt der Nutzung von Carsharing kann das Potenzial auf 1,6 % (8,5 Mrd. kg) erhöht werden.

Der Carbon Footprint sinkt um ca. 3,6 %, was Einsparungen von Treibhausgasemissionen von 6,6 Mrd. kg CO$_2$-Äquivalenten entspricht. Durch eine starke Nutzung von Fahrrädern auf Kurzstrecken statt der Nutzung von Carsharing kann das Potenzial auf 4,5 % (8,1 Mrd. kg CO$_2$-Äquivalente) erhöht werden.

3.1.8 Bürgerbus

3.1.9 Parkplatzsharing

Besitzer fester Parkplätze können über Online-Plattformen für feste Zeiten ihren freien Parkplatz an andere PKW-Besitzer anbieten. Die dadurch optimierte Platznutzung soll die Parkplatzknappheit in entsprechenden Gebieten verringern und dem Anbieter ein zusätzliches Einkommen generieren.

Parkplatzsharing könnte durch effizientere Nutzung von Parkflächen den Bedarf an Parkplätzen insgesamt reduzieren und somit im begrenzten Maßstab positiv zu Rohstoff- und Flächeneinsparungen beitragen. Der Rohstoffeinsatz und auch die Treibhausgasemissionen hängen bei der Mobilität insgesamt nur zu einem geringen Anteil am Parkplatz, da die Fahrt und die Herstellung der Fahrzeuge entscheidend sind. Somit bleiben die relevanten Vorteile die Zeiterparsparnis beim Auffinden eines Parkplatzes für den Mieter und die Nebeneinkunft für den Vermieter.

Es wurde eine Abschätzung durchgeführt, die den Rohstoffaufwand von potenziell eingesparten Parkplätzen abschätzt. Im Referenz-Szenario wird optimistisch davon ausgegangen, dass die 6000
Parkplatzsharing Angebote (Clausen et al., 2016) 6000 Parkplätze einsparen (Maximalabschätzung). Außerdem wurde berechnet, wie groß der Einfluss von einer Millionen und zehn Millionen eingesparten Parkplätzen wäre.

Die Ergebnisse zeigen, dass - selbst bei einer Einsparung von 1 Million Parkplätze - die Ressourceneffizienzpotenziale mit 0,1-0,16 % (Material Footprint) bzw. 0,004-0,008 % (Carbon Footprint) sehr gering sind. Erst bei einer Einsparung von 10 Mio. Parkplätzen (17 % aller Parkplätze) sind relevante Effekte für den Material Footprint zu erkennen.

3.2 Themenfeld Wohnen und Reisen

3.2.1 Untersuchte NsB-Angebotsformen

Im Themenfeld Reisen werden die NsB-Angebotsformen Couchsurfing und Flatsharing mit einem Hotel und einer Ferienwohnung verglichen. Die NsB-Angebotsform "Wohnungs-/Haustrausch" wurde nicht quantifiziert. Die Herleitung und Beschreibung der Untersuchungsfälle (NsB-Angebotsformen und Referenzfälle) werden im Folgenden beschrieben.

3.2.2 Berechnung - Cohousing und Wohngemeinschaft

2 Der Begriff Cohousing wird zusätzlich für Wohnsiedlungen verwendet, in denen Einfamilien- oder Reihenhäuser mit Einrichtungen zur gemeinschaftlichen Nutzung wie Gemeinschaftshäusern mit Veranstaltungsräumen, Küchen, Sporträumen oder gar Schwimmbädern ergänzt werden. Da diese Wohnform zwar erheblich zum sozialen Zusammenhalt beiträgt, aber keine Fälle bekannt waren, in denen die Pro-Kopf Wohnfläche und damit der Ressourceninput gesenkt wurde, haben wir diese Form des Cohousing nicht untersucht.
Grundannahmen, die eine Durchschnittswohnung definieren, knüpfen auch die Herleitung der Annahmen für die untersuchten NsB-Angebotsformen an.

Daraus ergaben sich folgende Werte: Die Referenzwohnung wird von einer Person bewohnt, hat eine Fläche von 67,1 m², einen Energieverbrauch von 1.656 kWh Strom und 9.986 kWh Raumwärme und Warmwasser und einen Wasserverbrauch von 44,2 m³ pro Jahr. Die Cohousing-Wohnung wird von 2,2 Menschen bewohnt, die auf 86,7 m² leben, von denen 81,4 privat und 5,3 gemeinschaftlich genutzter Wohnraum sind. Letzterer ist der Anteil an einer Gemeinschaftswohnfläche von 100m², die sich aus einer Wohnung, einer Waschküche und einem Werkraum zusammensetzt (persönliche Mitteilung vom 30.5.2016; Baugruppe Malerstraße o.J.). Es wird angenommen, dass die Gemeinschaftsräume an drei Tagen je Woche genutzt werden, die Auslastung liegt demnach bei 43 %. Die Energieverbräuche pro Cohousing-Wohnung betragen 3.726 kWh Strom und 12.450 kWh Raumwärme und Warmwasser sowie einen Wasserverbrauch von 99,4 m³ pro Jahr.

3.2.3 Berechnung - Wohngemeinschaften

Eine Wohngemeinschaft (WG) ist dadurch gekennzeichnet, dass eine Wohnung oder ein Haus (eher) dauerhaft gemeinsam genutzt wird. In einer WG leben meist unabhängige Personen (ohne Verwandtschaftsverhältnis). Sie haben eigene Zimmer, nutzen aber die vorhandene Infrastruktur gemeinsam (Küche, Bad, Wohnzimmer, Haushaltsgüter und Geräte) (Deutscher Mietkautionsbund, 2011; Gsell et al., 2015). Dadurch entfällt die Notwendigkeit, dass jede/r (Mit-)Bewohner/-in diese Infrastruktur separat nutzt bzw. anschafft (keine ausschließliche Nutzung von Eigentum).

Daraus ergaben sich folgende Werte: Die Referenzwohnung wird von einer Person bewohnt, hat eine Fläche von 67,1 m³, einen Energieverbrauch von 1.656 kWh Strom und 9.986 kWh Raumwärme und Warmwasser und einen Wasserverbrauch von 44,2 m³ pro Jahr. Die Wohngemeinschaft wird von 2,8 Menschen bewohnt, deren Wohnfläche sich auf 91,2 m² beläuft. Ihr Energieverbrauch beträgt 4.638 kWh Strom und 13.618 kWh Raumwärme und Warmwasser, der Wasserverbrauch 123,7 m³ pro Jahr.

Unter den verglichenen Wohnformen hat die Wohngemeinschaft den geringsten Material Footprint. Pro Person und Jahr werden 11.592 kg Ressourcen verbraucht. Der Energieverbrauch macht den
größten Anteil des Material Footprints aus, wobei 49% des MFs für Strom anfallen und 24% für Heizung und Warmwasser.

Auch der Carbon Footprint ist mit 2.722 kg CO$_2$Äq / Person / Jahr bei der Wohngemeinschaft geringer, als bei den anderen untersuchten Wohnformen. Die Analyse ergab, dass der CF vor allem durch den Energiebedarf bestimmt wird. So fallen 32% der Emissionen durch Stromverbräuche und 48% für Heizung und Warmwasser an.

Der Material Footprint beim Cohousing liegt mit 14.042 kg pro Person und Jahr über dem der Wohngemeinschaft und knapp unter dem einer Durchschnittswohnung (siehe Abbildung 6). Er ist 1,6 % geringer als der MF eines 2,2-Personen-Haushalts außerhalb des Cohousing (14.265 kg). Der Energieverbrauch macht den größten Anteil des Material Footprints aus, wobei 41% des MF für Strom anfallen und 24% für Heizung und Warmwasser.

Der Carbon Footprint beträgt 3.063 kg CO$_2$Äq / Person / Jahr und ist damit ebenfalls der zweitgeringste der untersuchten Wohnformen. Gegenüber dem 2,2-Personenhaushalt außerhalb des Cohousing (3.192 kg CO$_2$Äq) emittiert Cohousing 4 % weniger. Die Analyse ergab ebenfalls, dass der CF vor allem durch den Energiebedarf bestimmt wird. So fallen 28 % der Gesamtemissionen durch Stromverbräuche und 50 % für Heizung und Warmwasser an.

![Material and Carbon Footprint - Gesamt (pro Person und Jahr)](image)

Abbildung 6: REPA Ergebnisse für Cohousing und Wohngemeinschaft

3.2.4 Potenziale - Wohnen

Für die NsB-Angebotsform Wohngemeinschaft wurde eine Hochrechnung durchgeführt unter der Annahme, dass eine Erhöhung gemeinschaftlicher Wohnformen durch WG bis 2030 stattfinden wird. Im Vergleich zwischen einer Trendentwicklung und einer stärkeren Verbreitung von WGs (NsB-Ress Entwicklung) liegen insgesamt Ressourceneinsparpotenziale vor.

Für eine Abschätzung der Potenziale - unter Annahme einer zukünftigen Steuerungswirkung zur Förderung von WGs - wurden die Ergebnisse eines Mikrozensus für Alleinlebende und Alleinstehende

NsB-Ress Ressourceneffizienzpotenzialanalyse – Zusammenfassung 23

Von 2010 bis 2015 wurde eine Zunahme der Alleinstehenden in Mehrpersonenhaushalten um 18 % auf 2,04 Mio. beobachtet und eine Zunahme der Alleinlebenden in 1 PHH um 5 % auf 16,46 Mio. Bei einer Trendfortschreibung bis 2030 steigt der Material Footprint in der Summe von ca. 200,9 Mrd. kg in 2010 auf 243 Mrd. kg in 2030 um 42,1 Mrd. kg. Im alternativen NsB-Szenario wird davon ausgegangen, dass die theoretisch ab 2015 hinzukommenden Alleinstehenden in Wohngemeinschaften anstelle von Einpersonenhaushalten leben werden. Hieraus resultiert eine Zunahme der Alleinstehenden in Mehrpersonenhaushalten auf 2,04 Mio. und eine Zunahme der Alleinlebenden in 1 PHH um 5 % auf 16,46 Mio. Bei einer Trendfortschreibung bis 2030 steigt der Material Footprint in der Summe von ca. 200,9 Mrd. kg in 2010 auf 243 Mrd. kg in 2030 um 42,1 Mrd. kg. Im Vergleich der beiden untersuchten Varianten ergibt sich somit ein Ressourceneinsparpotenzial von ca. 1,385 Milliarden kg (3,3%).

3.2.5 Berechnung - Flatsharing

Bei der Unterkunftsart des Flatshareings suchen Reisende über eine Internetplattform nach einer Wohnung am Reiseziel, nehmen Kontakt zu Vermieter/-innen auf und buchen über besagte Plattform. Diese Plattform stellt die finanzielle Transaktion sicher und finanziert sich selbst über anteilige Gebühren. Flatsharing als Alternative zur Übernachtung im Hotel oder in einer Pension ist besonders seit der Bewerbung durch die Internetplattformen Airbnb und Wimdu populär in Deutschland.

Die Analyse baut dabei auf der Annahme auf, dass Flatsharing Wohnungen nur zeitweilig und als zusätzliche Nutzung an Gäste vermietet werden, wie dies der idealen Selbstdarstellung von den großen Anbietern entspricht. Wie in der Diffusionsanalyse zu Flatsharing näher ausgeführt ist (Clausen & Uhr, 2016), ist dies jedoch häufig nicht der Fall. Bei einem großen Teil der auf den Flatsharing-Portalen angebotenen Wohnungen handelt es sich um völlig normale Ferienwohnungen, die insoweit bezüglich des Material- und Carbon-Footprint genauso beurteilt werden müssen wie Ferienwohnungen.

Der CF pro Übernachtung und Person beträgt 8,1 kg CO₂Äq und ist damit ebenfalls der zweitgeringsten nach dem CF von Couchsurfing. Gegenüber einer Hotelübernachtung (11,2 kg CO₂-Äq) werden knapp 30 % eingespart. Die Analyse ergab ebenfalls, dass der CF vor allem durch den Energiebedarf bestimmt wird. So entfallen circa 32 % des Treibhausgaspotenzials auf Stromverbräuche und 65 % auf Heizung und Warmwasser.
3.2.6 Berechnung - Couchsurfing

Für das Couchsurfing gelten ähnliche Annahmen wie für das Flatsharing. Auch hier wird von einer Durchschnittswohnung ausgegangen, die ständig von 2,2 Personen bewohnt wird. Für das Couchsurfen kommt hier eine weitere Person hinzu. Demnach leben für die Dauer des Aufenthaltes 3,2 Personen in dem Haushalt. Da die Verbräuche für Heizen abhängig von der Wohnfläche sind,

Abb. 7: REPA Ergebnisse für Flatsharing und Couchsurfing

Zur Beurteilung von Flatsharing-Portalen sind diese Werte jedoch nicht heranzuziehen, da sich hier das wirkliche Flatsharing und normale Ferienwohnungen durchmischen und im Einzelfall für die Nutzer/-innen nicht zu unterscheiden ist, was wirklich angeboten wird. Hinzu kommt, dass Flatsharing-Portale negative Externalitäten mit sich bringen. In den vergangenen Jahren ist das Konzept häufiger in die Kritik geraten, da möglicherweise viele der Vermieter keine Steuern auf ihre Einnahmen zahlen, und z.T. nicht mehr nur private Gastgeber ihre eigenen Wohnungen anbieten, sondern Wohnungen speziell für Flatsharing angemietet werden (Clausen & Uhr, 2016a). Diese entziehen dem Wohnungsmarkt in verschiedenen Metropolen so viel Raum, so dass das Geschäftsmodell in den für Reisende attraktivsten Gebieten oder Vierteln für erhöhten Mietdruck sorgt.3

ändern sich diese im Vergleich zur Durchschnittswohnung nicht (13.603 kWh). Die Verbräuche von Strom und Wasser steigen mit zunehmender Personenzahl, liegen demnach für Strom bei 4.140 kWh und Wasser bei 141 m³.

Unter den verglichenen Unterkünften hat Couchsurfing den geringsten MF. Pro Person und Übernachtung werden 26,3 kg Ressourcen verbraucht. Dies sind 56 % weniger als bei einer Übernachtung im Hotel (59,3 kg). Der Energieverbrauch macht den größten Anteil des Material Footprints aus: es fallen 70 % für Strom und 26 % für Heizung und Warmwasser an.

Der CF pro Übernachtung und Person beträgt 6,1 kg CO₂-Äq und ist damit ebenfalls der geringste. Gegenüber einer Hotelübernachtung (11,2 kg CO₂-Äq) werden fast 50 % eingespart. Die Analyse ergab ebenfalls, dass der CF vor allem durch den Energiebedarf bestimmt wird. So entfallen 46 % des Treibhausgaspotenzials auf Stromverbräuche und 51 % auf Heizung und Warmwasser.

3.2.7 Vergleich verschiedener Reiseziele, -dauer und Verkehrsmittel

Abbildung 8: Material Footprint - Vergleich verschiedener Anreiseoptionen und Aufenthaltsdauer

Material Footprints Köln - Küste (nach Reisedauer und Anreiseart, in kg/Person)

- Heizen
- Wasserverbrauch
- Stromverbrauch
- Baumaterial

2 Übernachtungen | 12 Übernachtungen | 2 Übernachtungen | 12 Übernachtungen | 2 Übernachtungen | 12 Übernachtungen | 2 Übernachtungen | 12 Übernachtungen

Couchsurfing | Hotel | Flatsharing | Ferienwohnung
3.2.8 Potenziale - Reisen

Um die Ressourcenpotenziale berechnen zu können, wurden zwei Szenarien entwickelt.

Das Szenario B ist leicht ressourcenschonender und zeichnet sich dadurch aus, dass die Steigung bzw. die jährliche Zunahme für jede Reisemöglichkeit halbiert wird. Auch die Szenarien für Couchsurfing und Flatsharing arbeiten erstens mit einer Steigung, die gegenüber der Durchschnittssteigung des Szenario A um die Hälfte vermindert ist und zweitens auf einem linearen Wachstum beruht.

Im Szenario B ist innerhalb von 15 Jahren ein Anstieg von 12 auf 14 Mrd. kg zu messen, das entspricht einem relativen Anstieg um weniger als 20%. Auch hier stammt der Löwenanteil aus den Übernachtungen in Hotels. Der Anteil durch die Übernachtungen in Ferienhäusern, via Flatsharing und Couchsurfing beläuft sich auf knapp 2 Mrd. kg.

Nicht berücksichtigt sind in diesen Szenarien mögliche Reboundeffekte, die sich durch die Verdoppelung der Reisezahl der Couchsurfer in Verbindung mit deutlich weiteren Reiseentfernungen bzw. die Summierung kürzerer Einzelreisen insbesondere hinsichtlich des Carbon Footprints ergeben könnten.
3.2.9 Wohnungs- und Haustausch

Wie bei Clausen und Uhr (2016) abgeschätzt, werden näherungsweise etwa 0,2 Promille der Übernachtungen im Beherbergungsgewerbe durch Wohnungs- und Haustausch erreicht (d.h. 100.000 Übernachtungen jährlich).

Eine Übernachtung im Hotel hat einen Material Footprint von 59,3 kg pro Person und eine Übernachtung in einem Ferienhaus hat einen Material Footprint von 44,1 kg pro Person. Basierend auf den Analysen der Wohnformen würde eine Übernachtung in einer Wohnung einen Material Footprint von 39,1 kg pro Person (Durchschnittswohnung) betragen.

Eine Abschätzung zu möglichen Tauschvarianten, die sich unterscheiden, d.h. zwischen Haus-Wohnung bzw. Wohnung-Haus, zeigt absolute Einsparpotenziale. Würden bei allen 100.000 Tauschübernachtungen die eigene Wohnung mit einem Haus getauscht, wäre der MF des Wohnungs-Haustausches um 500.000 kg höher (als ein Tausch mit einer Wohnung). Würden bei allen 100.000 Tausch-Übernachtungen das eigene Haus mit einer Wohnung getauscht, wäre der MF des Haus-Wohnungstausches um 2,5 Mio. kg niedriger (als ein Tausch mit einem Haus).

Insgesamt wäre jedoch das Ressourceneffizienzpotenzial an den gesamten Übernachtungen in der Beherbergungsbranche (436.400.000 Übernachtungen in 2015) sehr gering, d.h. 0,002 % oder 0,1 %. Auch der Vergleich von Wohnungs-/Haustausch mit einer Hotelübernachtung zeigt nur sehr geringe Effekte.

4 Annahme: „In Deutschland gibt es bei Homelink ca. 800 Anbieter, bei Haustauschferien ca. 1.200. Tauscht jeder Anbieter einmal im Jahr für 2 Wochen mit 3 Personen ergeben sich so ca. 100.000 Übernachtungen“ (Clausen und Uhr, 2016, 43).

3.3 Themenfeld Alltagsgegenstände

Da Mobilität, Wohnen und Ernährung mit 43 %, 27 % und 15 % die größten Beiträge zum Ressourcenbedarf pro Person und Jahr beitragen (Lettenmeier et al., 2014), haben die Haushaltsgüter mit einem Anteil von 7 % und 3 t/Person und Jahr nur einen eher kleinen Einfluss. Um einen nachhaltigeren Material Footprint von insgesamt 8 t/Person und Jahr zu erreichen, müsste der Bereich Haushaltgüter nach Lettenmeier et al. 2014 aber auch deutlich auf 0,5 t/Person und Jahr und damit um 83 % reduziert werden. NsB-Angebotsformen stellen, neben z. B. der Erhöhung der Lebensdauer oder der Reduzierung der Gesamtanzahl an genutzten Haushaltgütern, eine der Maßnahmen dar, um den Ressourcenbedarf in diesem Bereich maßgeblich verringern zu können.

3.3.1 Vorgehensweise

Um eine Vergleichsbasis zu schaffen, werden die in den verschiedenen NsB-Angebotsformen "weitergegebenen" Gegenstände (Verkauf, Tausch etc.) mit einem Neukauf im Laden verglichen. Für eine bessere Übersichtlichkeit wurden fünf Gegenstände aus den verschiedenen Produktkategorien Printmedien, Kleidung, Möbel, Werkzeug und Elektronik für die Analyse ausgewählt. Die Auswahl basiert auf typischen Waren, die gebraucht gehandelt werden.

3.3.2 Untersuchte NsB-Angebotsformen

Das Themenfeld Alltagsgegenstände umfasst verschiedene NsB-Angebotsformen, die untersucht und mit einer Neukauf-Option verglichen werden. Zur Veranschaulichung werden fünf Gegenstände aus verschiedenen Kategorien verwendet. Als Beispielgegenstände werden Bücher (Kategorie Printmedien), Jeans (Kategorie Kleidung), Sofa (Kategorie Möbel), Bohrmaschine (Kategorie Werkzeug) und Laptop (Kategorie Elektronik) näher untersucht. Als Referenz wurde jeweils der Neukauf gegenübergestellt und die Anzahl der Nutzer/-innen entsprechend angepasst. Es gilt die Annahme, dass Gegenstände jeweils einmal den/die Besitzer/-in wechseln. Bei Verleihsystemen (Bibliothek, Werkzeugverleih) sind höhere Nutzermengen berücksichtigt.
3.3.3 Berechnung - Online Second Hand Handel und Tauschplattformen im Internet

![Material Footprint - Second Hand Online](image)

Abbildung 10: Material Footprint Second Hand Online

3.3.4 Berechnung - Stationärer Second Hand Handel und Umsonstläden

In einem stationären Second Hand Laden werden gebrauchte Waren für einen günstigeren Preis weiterverkauft. Darunter fallen z.B. Haushaltsgeräte, Kleidung, Werkzeug, Bücher, Geschirr, Dekoration, Möbel, etc.

weitergebenen werden, sondern jeder Gegenstand eine größere Anzahl Nutzer erreicht und ein zusätzlicher Transportweg durch die notwendige Rückgabe des entliehenen Gegenstandes anfällt.

Es wird davon ausgegangen, dass sich hinsichtlich der Umweltauswirkungen keine Unterschiede zwischen stationärem Second Hand Handel und Umsonstläden ergeben, d.h. ob ein Gegenstand verkauft oder gratis weitergegeben wird.

Abbildung 12: Material Footprint Second Hand Laden

3.3.5 Berechnung - Nachbarschaftliche Tauschringe

Im Fall der Tauschringe wird nur der Fall des nachbarschaftlichen Tauschens betrachtet. Hier wird davon ausgegangen, dass Gegenstände entweder beim gelegentlichen Austausch mit den Nachbarn weitergegeben werden oder bei nachbarschaftlichen Tauschveranstaltungen, sodass hier keine zusätzlichen Transporte oder Energieverbräuche anfallen. Die Nutzung einer Onlineplattform wird in diesem Fall z.B. nicht betrachtet. Nachbarschaftlicher Tausch lässt sich kaum quantifizieren, da diese Form des Tauschens oft auf privater und sehr informeller Ebene abläuft.

An dem Beispiel Kleidung zeigt sich ebenfalls, dass das nachbarschaftliche Tauschen am besten abschneidet mit einem Carbon Footprint von 5,5 kg CO₂Äq / Nutzer (siehe Abbildung 15). Auch für die Weitergabe eines Sofas schneidet das nachbarschaftliche Tauschen mit einem Carbon Footprint von ca. 142 kg CO₂Äq / Nutzer am besten ab im Vergleich zu anderen Optionen. Für das Beispiel des Laptops, wird neben dem Material- und Herstellungsaufwand des Laptops selbst und der Anzahl der Nutzer der Strombedarf in der Nutzungsphase berücksichtigt. Durch den Einbezug der Nutzungsphase unterscheiden sich die Ergebnisse der verschiedenen NsB-Angebotsformen nur geringfügig. So ergibt sich ein Carbon Footprint von bei ca. 61 kg CO₂Äq / Nutzer / Jahr. Die
Neukaufoption - mit der Annahme eines Nutzers - fällt hingegen der Carbon Footprint mit ca. 103 kg CO$_2$-Äq / Nutzer / Jahr deutlich höher aus.

3.3.6 Berechnung - Werkzeugvermietung

Im Gegensatz zu "2nd Hand (stationär) - Verkauf im Laden" unterscheiden sich Leihläden hinsichtlich des Ressourcenbedarfs, da die Gegenstände in diesen nicht nur einmal weiter gegeben werden, sondern jeder Gegenstand eine größere Anzahl Nutzer erreicht und ein zusätzlicher Transportweg durch die notwendige Rückgabe des entliehenen Gegenstandes anfällt.

![Material und Carbon Footprint - Werkzeug (Beispiel Bohrmaschine) inkl. Nutzung](image)

Abbildung 16: Material und Carbon Footprint Werkzeugnutzung

Hierdurch ergibt sich, dass die NsB-Angebotsformen Second Hand-Online und -Laden sowie Nachbarschaftliches Tauschen mit ca. 24 kg / Nutzer / Jahr Material Footprint und einem Carbon Footprint von ca. 3 kg CO$_2$-Äq / Nutzer / Jahr sehr ähnlich ausfallen. Hier ist vor allem die Anzahl der Nutzer ausschlaggebend und weniger, auf welchem Weg die Bohrmaschine bezogen wird. Dadurch
ergibt sich ebenfalls, dass beim Werkzeugverleih (bei 10 Nutzern je Bohrmaschine) der Material Footprint mit ca. 14 kg / Nutzer / Jahr und der Carbon Footprint ca. 2 kg CO$_2$-Äq / Nutzer / Jahr am geringsten ausfällt.

3.3.7 Berechnung - Bücherschränke und Bibliotheken

![Material und Carbon Footprint - Printmedien (Beispiel Buch)](image)

Abbildung 17: Material und Carbon Footprint Bücher

Die Ergebnisse für die Bücherschränke ist etwas gesondert zu sehen (0,18 kg / Nutzer Material Footprint, da hier der Material- und Herstellungsbedarf des Buchs selbst nicht betrachtet wurde, da angenommen wird, dass es sich bei in Bücherschrank gestellten Büchern von Seiten der Einsteller um eine Art Entsorgung der Bücher handelt und diese ansonsten im Papiermüll entsorgt werden würden.

Für die Einstellung eines Buchs in einen Bücherschrank ergibt sich mit diesen Annahmen ein Carbon Footprint von 0,03 kg CO$_2$-Äq / Nutzer.

3.3.8 Potenziale - Bücherschränke

Als Maximalabschätzung könnte hier angenommen werden, dass durch die Entnahme eines Buches aus dem Bücherschrank ein gekauftes Buch eingespart werden kann. Eine Untersuchung in Hannover zeigte allerdings, dass für 100 aus dem Bücherschrank entnommene Bücher nur ca. 2,8 Bücher nicht gekauft und ca. 1,1 Bücher nicht ausgeliehen werden (Clausen and Steudle, 2016). Andersartige Freizeitbeschäftigungen, wie z.B. Fernsehen werden demnach vermehrt durch das Lesen eines Buchs aus dem Bücherschrank ersetzt, sodass die Auswirkung des Bücherschranks auf Material- und Carbon Footprint eigentlic in einem „Datenuniversum aus Büchern“ kaum zu beurteilen ist.

Für diese Maximalabschätzung ergäben sich für das Jahr 2030 Einsparungspotenziale von bis zu 48.000 t Material Footprint (10.000 t Carbon Footprint) pro Jahr. Daraus ergibt sich für einen Absatz

3.3.9 Berechnung - Digitaler Download von Medien

Wird nur der Energiebedarf für den Server und Download betrachtet, ergeben sich sehr geringe Werte von 0,005 kg CO₂-Aq. Wird jedoch das Gerät zum lesen mitberücksichtigt, fallen die Ergebnisse höher aus. Für die Nutzung eines Laptops für 6 h zum lesen eines E-Books, würden z. B. 0,44 kg CO₂-Aq. Carbon Footprint anfallen.

3.3.10 Urban Gardening

Nicht zu vernachlässigen sind mögliche indirekte Einspareffekte durch die Art der Zeitverwendung, da davon ausgegangen werden kann, das Urban Gardening im Vergleich zu anderen Freizeitbeschäftigungen eher eine ressourcen- und klimaschonende Variante darstellt.
4 Ergebniszusammenfassung der REPAs

4.1 Individualmobilität

Die Ressourceneffizienzpotenzialanalysen haben gezeigt, dass NsB-Angebote der Individualmobilität bis zu 1 bis 4 % relevanter Senkung des Rohstoffaufwandes und der Treibhausgasemissionen führen können.

Carpooling (Unternehmen) hat ein großes Potenzial, wenn der Besetzungsgrad, wie in den Berechnungen angenommen, erhöht wird (im Vergleich zum aktuell sehr geringen Besetzungsgrad im Berufsverkehr). Im Vergleich zum IST-Zustand sinken im betrachteten Fall der Material Footprint um 3,2 % und der Carbon Footprint um 3,6 %. Im genutzten Szenario werden 22,4 Milliarden Fahrzeugkilometer pro Jahr eingespart. Die verstärkte Umsetzung des Konzepts könnte jedoch schwierig sein, da Nutzer/-innen sich in starke zeitliche Abhängigkeiten im Alltag begeben würden und diese sich für weitere Erledigungen auf dem Arbeitsweg einschränken müssten (Kinder zur Schule bringen, Einkauf, etc.). Für eine erfolgreiche Etablierung müsste auf zwei Ebenen angesetzt werden. Zum einen müssten Firmen (ab ca. 100 Mitarbeiter (Rodt et al., 2010, S. 65)) sich dazu bereit erklären ein Mobilitätsmanagement einzuführen und eine Vermittlerplattform für Mitarbeitende bereitzustellen und zum anderen müssten die Mitarbeitenden diese Angebote dann auch nutzen. Vor allem individuell unterschiedliche Arbeitszeiten wären ein Hindernis für regelmäßige Nutzungen. Der Vorteil ist die gute Erreichbarkeit potenzieller Nutzer/-innen durch die Firma über Personalversammlungen, E-Mail Verteiler, Aushänge etc. Außerdem können so weitere Anreize
geschaffen werden, wie günstig gelegene Parkplätze für Carpooling Nutzer oder der Zugang zum Fuhrpark der Firma. Hier sind insbesondere Arbeitgeber gefragt, Carpooling in ihrer Firma zu fördern. Neben ökonomischen Vorteilen, die den Pendlern bisher nicht relevant genug scheinen, um Carpooling für die täglichen Arbeitswege zu nutzen oder anzubieten, könnte hier der gemeinsame Firmenbezug genutzt werden, um positive Geschichten zu erzählen, Wettbewerbe zu gestalten (welche Abteilung hat den höchsten Besetzungsgrad?) oder andere spielerische Ansätze zu nutzen.

Das private Carpooling (Mitfahrzentrale) zeigt zwar in Szenario B, bei dem 3 % der Personenkilometer im PKW durch Carpooling gefahren werden, Einsparpotenziale: Der Material Footprint sinkt um ca. 1,2 % und der Carbon Footprint um 1,3 %. Dieses Szenario ist jedoch optimistisch ausgerichtet. Die anderen Untersuchungen (1% der PKW Fahrten durch Carpooling, 2% bzw. 5 % der Zugfahrten durch Carpooling) führen zu Einsparungen oder Erhöhungen der Material und Carbon Footprint unter 1 %. Aufgrund der Unsicherheiten (mangelnde Datenlage für Szenarien) und damit groben Annahmen der Modellierung müssen diese Ergebnisse kritisch und vorsichtig interpretiert werden.

Die intermodale Mobilität beschreibt ein Mobilitätsverhalten, bei dem verschiedene Verkehrsträger innerhalb eines Weges einfacher miteinander kombiniert werden können. Das Konzept der intermodalen Mobilität wurde weitestgehend bereits im Szenario A für Carsharing berechnet. Der Material Footprint für die Mobilität in Deutschland sinkt um 1 %. Dies entspricht ca. 5 Mrd. kg Rohstoffe. Durch eine starke Nutzung von Leihrädern auf Kurzstrecken statt der Nutzung von Carsharing kann das Potenzial auf 1,6 % (8,5 Mrd. kg) erhöht werden. Der Carbon Footprint sinkt um ca. 3,6 %, was Einsparungen von Treibhausgasemissionen von 6,6 Mrd. kg CO₂-Aquivalenten entspricht. Durch eine starke Nutzung von Fahrrädern auf Kurzstrecken statt der Nutzung von Carsharing kann das Potenzial auf 4,5 % (8,1 Mrd. kg CO₂-Äquivalente) erhöht werden. Je nachdem wie groß die Anteile im Modal Split von Carsharing, ÖV und Bikesharing ausfallen, können sich Rohstoff- und Treibhausgasreduktionen ergeben.

Der Bürgerbus und das Parkplatzsharing zeigen keine großen Ressourceneffizienzpotenziale, bieten dafür aber soziale Vorteile in Form von gesellschaftlicher Teilhabe (Bürgerbus) und kürzeren Parkplatz-Suchzeiten. Auch könnten vermehrt innerstädtische Grünflächen entstehen, wenn der reduzierte Parkplatzbedarf entsprechend stadträumlich umgewidmet würde.

Ein weiterer Aspekt zu den Wirkungen besteht in der Betrachtung der direkten und indirekten Reboundeffekte durch die verringerten Kosten des Carpoolings / Carsharings pro Person. So teilen sich nicht nur die Umwelteinflüsse einer Fahrt auf die vermehrten Mitfahrenden auf, sondern auch die finanziellen Kosten, welche dann für anderen Konsum frei werden. D.h. die Kostenersparnis kann sich nicht nur in Mehrausgaben für erhöhte Mobilität niederschlagen, sondern auch in Mehrausgaben für andere Konsumfelder. Eine Beispielrechnung für das Carpooling (Unternehmen) zeigt dies. Im genutzten Szenario werden 22,4 Milliarden Fahrzeugkilometer pro Jahr eingespart. Bei Kosten von ca. 45 cent/km (ADAC, 2016) für einen neuen VW Golf (inkl. Anschaffung, Werkstatt, Versicherung, Kraftstoffverbrauch, Reifen, Verkauf des alten VW Golf etc.), führt das Szenario des vermehrten Carpoolings im Berufsverkehr zu Einsparungen von ca. 10,1 Milliarden Euro. Laut Gsell et al. (2015, S. 152) verursacht ein Euro im durchschnittlichen Konsum 0,912 kg CO₂-Aq. Insgesamt
würde sich danach ein Rebound von 9,2 Milliarden CO₂Äq. ergeben. Dadurch würde der Carbon Footprint im Vergleich zum Basisszenario nicht sinken, sondern um 1,5 % steigen. Diese Rebound-Rechnung ist stark vereinfacht und dient nicht genauer Potenzialabschätzungen, sondern der Absteckung von Größenordnungen. Die möglichen indirekten Reboundeffekte, müssten mit tieferen Analysen betrachtet werden, um entsprechend auf diese Effekte reagieren zu können.

4.2 Wohnen & Reisen

Ein ähnliches Gesamtbild zeigt sich beim Carbon Footprint, der durch den Energieverbrauch (Strom, Wärme) dominiert wird, allerdings deutlich stärker als beim Material Footprint. Anteilig am Carbon Footprint (gesamt) macht bei der WG der Stromverbrauch 32% und der Energieverbrauch (Heizung und Warmwasser) 48% aus. Beim Cohousing macht der Stromverbrauch 28% und der Energieverbrauch (Heizung und Warmwasser) 50% aus. Der Anteil der Haushaltsausstattung liegt bei 17% (WG) bzw. mit 19% (Cohousing) des Carbon Footprints. Der Carbon Footprint des Wohnungsbaus ist mit 2% gering.

Das Themenfeld **Reisen** umfasst die zwei NsB-Angebotsformen „Couchsurfing“ und „Flatsharing“, die quantifiziert und denen zwei gängige Reiseformen (Ferienhaus und Hotel) gegenübergestellt werden. Die NsB-Angebotsform "Wohnungs- / Haustausch" wurde nicht quantifiziert.

Der **Materialaufwand für eine Übernachtung** schwankt zwischen 26,3 und 59,3 kg pro Person. Der höchste Wert wird durch eine Übernachtung im Hotel verursacht, am besten schneidet der Fall Couchsurfing ab. Eine Übernachtung via Flatsharing hat einen Materialaufwand von 32 kg und eine Übernachtung in einem Ferienhaus 44,1 kg.

Der **Carbon Footprint für eine Übernachtung** liegt zwischen 6,1 und 13,6 kg CO₂. Am schlechtesten schneidet hier das Ferienhaus ab, das Hotel liegt mit 11,2 kg CO₂ knapp vor diesem. Den niedrigsten Wert erreicht erneut Couchsurfing mit 6,1 kg CO₂ gefolgt von der Übernachtung via Flatsharing mit 8,1 kg CO₂.

Um die **Ressourceneffizienzpotenziale der beiden NsB-Angebote Couchsurfing und Flatsharing** berechnen zu können, wurden zwei Szenarien entwickelt. Szenario A steht für einen ressourcenintensiveren Tourismussektor, der sich vor allem Dingen durch ein Wachstum der Hotellerie auszeichnet. So zeigt die Entwicklung der letzten Jahre, dass sich die Anzahl der Übernachtungen in Hotels und Ferienwohnungen eher linear fortsetzen, während die NsB-Angebotsformen Couchsurfing und Flatsharing eher stark gewachsen sind. Das Szenario B ist leicht ressourcenschonender und zeichnet sich dadurch aus, dass die Steigung bzw. die jährliche Zunahme für jede Reisemöglichkeit halbiert wird. Auch die Szenarien für Couchsurfing und Flatsharing arbeiten erstens mit einer Steigung, die gegenüber der Durchschnittssteigung des Szenario A um die Hälfte vermindert ist und zweitens auf einem linearen Wachstum beruht. In **Szenario A** steigen die Materialaufwände innerhalb von 15 Jahren von 12 Mrd. kg um rund 30 % auf über 16 Mrd. kg. Im Szenario B ist innerhalb von 15 Jahren ein Anstieg von 12 auf 14 Mrd. kg zu messen, das entspricht einem relativen Anstieg um weniger als 20 %. Couchsurfing und Flatsharing könnten so zu einer Senkung des Ressourcenverbrauchs beitragen, der absolut aber dennoch steigend ist.

Die groben Abschätzungen zum „**Wohnungs-/Haustausch**“ zeigen marginale Ressourceneffizienzpotenziale (100.000 Übernachtungen) an den gesamten Übernachtungen in der Beherbergungsbranche (436.400.000 Übernachtungen in 2015). Auch der Vergleich von Wohnungs-/Haustausch mit einer Hotelübernachtung zeigt nur sehr geringe Effekte.
4.3 Alltagsgegenstände

Die Entwicklung der NsB-Angebotsformen in Deutschland und damit die Potenziale im Themenfeld Gegenstände lassen sich nur schwierig abschätzen. Ein Grund dafür ist, dass die Anzahl und Art der Gegenstände sehr vielfältig und divers ist und das Potenzial für jeden Gegenstand und jede NsB-Angebotsform unterschiedlich ausfallen kann. Zusammenfassend lässt sich sagen, dass im Vergleich zum Neukauf im Laden Ressourcen für alle untersuchten NsB-Fälle eingespart werden können. Die hier dargestellten Prozentzahlen gelten dabei jeweils pro Produkt, stellen also nicht die im Vergleich zum gesamten Konsumgütermarkt erschließbaren Potenziale dar.

Online Second Hand Handel und Tauschplattformen im Internet: So lassen sich zwischen 21 bis 43 % der Materialbedarfs pro Nutzer gegenüber eines Neukaufs beim Erwerb über Online Plattformen einsparen (und der Erhöhung von einem auf zwei Nutzern).

Da für **nachbarschaftliches Tauschen** keine zusätzliche Infrastruktur notwendig ist sind hier für Gegenstände, bei denen kein Ressourcenbedarf in der Nutzungsphase anfällt, bei der Erhöhung der Nutzerzahl von eins auf zwei eine Einsparung von 50 % des Materialbedarfs pro Nutzer möglich. Bei den Beispielgegenständen Laptop und Bohrmaschine hingegen lassen sich 44 % bzw. 30 % an Materialbedarf pro Nutzer und Jahr einsparen, da hier in der Nutzungsphase aufgrund des Energiebedarfs der Materialbedarf nicht zu vernachlässigen ist.

Die Nutzung von BÜCHERSCHRANKEN stellt eine gute zusätzliche Option zur Weitergabe von Büchern dar und deren Nutzung reduziert den Ressourcenbedarf im Vergleich zu dem Neukauf wesentlich, wobei nur wenige Bücherschrank-Bücher derzeit wirklich einen Neukauf ersetzen.

Durch die Nutzung von **digitalen Medien** kann der Ressourcenbedarf unter Umständen maßgeblich verringert werden. Hier spielt jedoch die Gerätenutzung zum Abspielen des Mediens eine wesentliche Rolle. Eine geringe Ausnutzung des Abspielgeräts kann dazu führen, dass der Ressourcenbedarf höher ausfällt.

Im Bereich des **Urban Gardening** konnten kleine Ressourceneinsparpotenziale bei Anbau und durch den Wegfall nachgeschalteter Schritte in der Wertschöpfungskette (z. B. Transport zum Einzelhandel) identifiziert werden. Darüber hinaus ergeben sich möglicherweise geringere Verbräuche durch eine veränderte Freizeitgestaltung. Um eine genauere Aussagen treffen zu können, müssten jedoch die Urban Gardening-Projekte in Deutschland zunächst Daten erhoben werden. Insgesamt ist zu schätzen, dass das Ressourceneinsparpotenzial aus allen NsB-Angeboten aus dem Bereich Alltagsgegenstände eher klein ist.
5 Schlussfolgerungen und Handlungsempfehlungen

Insbesondere lassen sich nur einige relevante Ressourceneffizienzpotenziale erkennen.

Im Bereich der Mobilität sind dies zum einen die Kombination aus Carsharing und multimodaler Mobilität und zum anderen die Carpooling Ansätze im privaten Bereich und bei Unternehmen bzw. Pendlern. Bürgerbusse erzielen bestenfalls geringe Wirkungen, Parkplatzsharing könnte zu Reboundeffekten führen.

Im Bereich des Wohnens und Reisens sind größere Potenziale nur durch eine zunehmende Verbreitung von Wohngemeinschaften zu erhoffen. Cohousing und Flatsharing erschließen nur kleinste Potenziale. Couchsurfing dürfte mit erheblichen Reboundeffekten verbunden sein.

Im Kontext der Alltagsgegenstände lassen sich zwar pro Produkt erhebliche Potenziale erschließen, alle NsB-Angebote zusammen stellen aber nur eine extrem kleine Nische des Konsumgütermarktes dar.

Die oft wahrnehmbare positive Konnotation der Sharing Economy im Kontext der Umweltpolitik entbehrt damit weitestgehend (noch) der Begründung. Innerhalb der Sharing-Economy gibt es, wie auch innerhalb der Märkte für Produkte und Dienstleistungen, einzelne Angebote, die Ressourceneffizienzpotenziale erschließen könnten und die der öffentlichen Förderung würdig wären. Bei anderen ist dies nicht der Fall oder es sind sogar deutlich negative Effekte zu befürchten.

Ein spezieller Teil der Sharing Economy ist von der Wirkung her weniger als ressourcenleicht sondern eher als sozial positiv zu charakterisieren. Hierzu gehören gerade die Offline-Angebote wie Umsonstläden, Urban Gardening, Cohousing, die Wohngemeinschaft und auch das nachbarschaftliche Tauschen. Dieser Teil mag nur kleine umweltentlastende Vorteile bieten, aber für die soziale Kohäsion der Gesellschaft bietet er große Potenziale.

6 Literatur

Individualmobilität

Sven Böll, 2016. Deutsche Bahn: Dobrindt treibt der Bahn den Turbo-Kapitalismus aus - SPIEGEL

Wohnen und Reisen

Alltagsgegenstände

BOKX AG. 2016. „BOKX Book Box“. http://bokx.de/stadtmoebel-buecherschrank/.

Manhart, Andreas, Eva Brommer, und Jens Gröger. 2011. „PROSA E-Book-Reader Entwicklung der Vergabekriterien für ein klimaschutzbezogenes Umweltzeichen“. Studie im rahmen des Projekts „Top 100 - Umweltzeichen für klimarelevante Produkte“. Freiburg: Öko-Institut e.V.

Universität Ulm. 2009. „Energieausweis für Nichtwohngebäude Bibliothek Uni-Ulm“.

