Materialband

Wohnen und Reisen

Ressourceneffizienzpotenzialanalyse
von Nutzen statt Besitzen Angeboten

Katrin Bienge I Sebastian Kiefer I Maike Pott
Wuppertal Institut
Impressum

Ressourceneffizienzpotenzialanalyse von Nutzen statt Besitzen Angeboten
Materialband: Wohnen & Reisen

Autorinnen/Autoren

Katrin Bienge, Sebastian Kiefer, Maike Pott
© Wuppertal Institut 2017

Kontakt

Projektkoordination

Wuppertal Institut für Klima, Umwelt, Energie gGmbH
Martina Schmitt, martina.schmitt@wupperinst.org
Tel. +49 (0)202 / 2492-128

Projektpartner

Faktor 10 Institut für nachhaltiges Wirtschaften gGmbH
Holger Rohn, holger.rohn@f10-institut.org
Tel. +49 (0) 6031 / 791137

Borderstep – Institut für Innovation und Nachhaltigkeit gGmbH
Jens Clausen, clausen@borderstep.de
Tel. +49 (0) 511 / 30059245

Das Projekt wird im Rahmen der Innovations- und Technikanalyse (ITA) durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert (Förderkennzeichen 16/1653).

Gestaltung Deckblatt: VisLab, Wuppertal Institut. Fotos (Cover): imageegami - Fotolia; Schlüsselübergabe und Gartenarbeitende: Thinkstoc
Zusammenfassung

Der vorliegende Materialband dokumentiert die Ergebnisse der Analyse von Ressourceneffizienzpotenzialen von 5 Nutzen statt besitzen Angeboten aus dem Themenfeld Wohnen und Reisen.

Kapitel 1 beschreibt die Methode der Ressourceneffizienzpotenzialanalyse (REPA).

Kapitel 2 stellt die Ergebnisse der Analysen der untersuchten Wohnformen dar:

- Cohousing - Gemeinschaftsräume
- Wohngemeinschaft

Kapitel 3 stellt die Ergebnisse der Analysen der untersuchten Reiseformen dar:

- Couchsurfing
- Flatsharing
- Wohnungs- / Haustausch

Es werden jeweils der Untersuchungsgegenstand, zentrale Annahmen für die Berechnungen und die Ergebnisse der Modellierungen dargestellt. Die NsB-Angebotsform "Wohnungs- / Haustausch" wurde nicht quantifiziert.

Die Zusammenfassung der beiden Themen Wohnen und Reisen sind in den jeweiligen Kapiteln verortet.
Inhaltsverzeichnis

Zusammenfassung ... I
Inhaltsverzeichnis ... II
Abbildungsverzeichnis .. IV
Tabellenverzeichnis ... V
Abkürzungsverzeichnis .. V

1 Ressourceneffizienzpotenziale von NsB-Angebotsformen im Themenfeld Wohnen & Reisen 7
 1.1 Relevanz und Stand der Forschung .. 7
 1.2 Vorgehensweise .. 7

2 Wohnen: Cohousing - Gemeinschaftsräume und Wohngemeinschaften 8
 2.1 Beschreibung des Untersuchungsgegenstands .. 8
 2.1.1 Cohousing ... 8
 2.1.2 Wohngemeinschaften .. 9
 2.2 Definition der funktionellen Einheit .. 9
 2.3 Analyserahmen und zentrale Annahmen .. 10
 2.3.1 Referenz: Durchschnittswohnung und 1-Personen-Haushalt ... 10
 2.3.2 Cohousing - Gemeinschaftsräume ... 13
 2.3.3 Wohngemeinschaften (WG) ... 14
 2.4 Ergebnisse der Materialintensitätsanalyse Wohnen ... 15
 2.5 Ergebnisse der Potenzialanalyse Wohnen ... 23
 2.6 Zusammenfassung ... 27

3 Reisen: Couchsurfing, Flatsharing, Wohnungs-/Haustausch ... 28
 3.1 Beschreibung des Untersuchungsgegenstands .. 28
 3.1.1 Flatsharing ... 28
 3.1.2 Couchsurfing ... 28
 3.1.3 Wohnungs- / Haustausch .. 28
 3.2 Definition der funktionellen Einheit .. 29
 3.3 Analyserahmen und zentrale Annahmen .. 29
 3.3.1 Referenz: Hotel .. 30
 3.3.2 Referenz: Ferienhaus .. 30
 3.3.3 Reisen – Flatsharing .. 31
3.3.4 Reisen – Couchsurfing .. 31
3.3.5 Datenqualität der zentralen Annahmen .. 31
3.4 Ergebnisse der Materialintensitätsanalyse Reisen: Flatsharing und Couchsurfing 32
 3.4.1 Materialintensitäten .. 32
 3.4.2 Reisebeispiele inklusive Anreiseverbräuche ... 35
 3.4.3 Wohnungs- und Haustausch .. 39
3.5 Ergebnisse der Ressourcenpotenzialanalyse Reisen ... 41
3.6 Zusammenfassung .. 45
4 Literatur .. 47
Abbildungsverzeichnis

Abbildung 1: Vergleichende Ergebnisse Wohnen - Material und Carbon Footprint15
Abbildung 2: Material Footprint nach Verbrauchsgruppen (links: in kg / Person / Jahr; rechts: in %) ...16
Abbildung 3: Material Footprint - Ausstattung ..17
Abbildung 4: Carbon Footprint nach Verbrauchsgruppen (links: in kg CO2eq / Person / Jahr; rechts: in %) ...18
Abbildung 5: Carbon Footprint - Ausstattung ..19
Abbildung 6: Sensitivität Strommix, Änderungen des Material und Carbon Footprint Gesamt ...20
Abbildung 7: Sensitivität Haushaltsausstattung, Darstellung der Änderung des Material und Carbon Footprint Gesamt ...22
Abbildung 8: Material Footprint 2010-2030 - Ressourceneffizienzpotenzial von WGs; links: Trendentwicklung; rechts: NsB-Ress Szenario ...26
Abbildung 9: Vergleichende Ergebnisse Reisen – Material und Carbon Footprint33
Abbildung 10: Material Footprint nach Verbrauchsgruppen ...34
Abbildung 11: Material Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall 'Köln - Küste' ..36
Abbildung 12: Material Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall 'Köln - Küste' ..37
Abbildung 13: Material Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall 'München - Madrid' ..38
Abbildung 14: Carbon Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall 'München - Madrid' ..39
Abbildung 15: Ressourcenpotenziale für Szenario A im zeitlichen Verlauf von 2015 bis 2030. ...43
Abbildung 16: Ressourcenpotenziale für Szenario B im zeitlichen Verlauf von 2015 bis 2030. ...43
Abbildung 17: Mittlere jährliche Änderungen der Materialaufwände im Zeitraum 2015-2030 ...44

NsB-Ress Ressourceneffizienzpotenzialanalyse – Materialband Wohnen & Reisen Seite: IV
Tabellenverzeichnis

Tabelle 1: Untersuchte NsB-Angebotsformen - Wohnen ... 8
Tabelle 2: Überblick über zentrale Annahmen - Wohnen .. 10
Tabelle 3: Stichprobe www.wg-gesucht.de .. 14
Tabelle 4: Ausstattung der NsB-Ress Wohnformen nach EVS (Ausstattungsbestand) 22
Tabelle 5: Trendentwicklung für Alleinstehende und Alleinlebende 2010-2030 25
Tabelle 6: Eckdaten und zentrale Annahmen der verschiedenen Reiseformen 29
Tabelle 7: Abschätzung von Ressourceneffizienzpotenzialen - Wohnungs- / Haustausch 40
Tabelle 8: Kennzahlen des Szenario A für die Anzahl an Übernachtungen pro Jahr 41
Tabelle 9: Kennzahlen des Szenario B für die Anzahl an Übernachtungen pro Jahr 42

Abkürzungsverzeichnis

MF Material Footprint
CF Carbon Footprint
REPA Ressourceneffizienzpotenzialanalyse
NsB Nutzen statt Besitzen
BG Besetzungsgrad
SE Sharing Economy
1 Ressourceneffizienzpotenziale von NsB-Angebotsformen im Themenfeld Wohnen & Reisen

Es wurden zwei NsB-Angebotsformen im Themenfeld Wohnen und zwei NsB-Angebotsformen im Themenfeld Reisen auf ihre Ressourceneffizienzpotenziale in Deutschland untersucht und mit Referenzfällen verglichen.

1.1 Relevanz und Stand der Forschung

1.2 Vorgehensweise

Zur Identifizierung der Ressourceneffizienzpotenziale im Themenfeld Wohnen wurde zunächst untersucht, welche konventionellen Wohnformen den jeweiligen NsB-Angebotsformen, als Referenzfall, gegenüberstehen. Ausgehend von der derzeitigen Nutzergruppe der NsB-Angebotsform zeigt sich, dass

• „Cohousing – Gemeinschaftsräume“ mit einer Durchschnittswohnung und
• „Wohngemeinschaft“ mit einem Durchschnitts-1-Personenhaushalt
zu vergleichen sind.

Das Vorgehen zur Identifizierung der Ressourceneffizienzpotenziale im Themenfeld Reisen ist analog hierzu. Zunächst wird untersucht, welche Referenzfälle für Reisen via "Couchsurfing" und "Flatsharing" relevant sind, d.h. es werden

• „Couchsurfing“ mit einer Übernachtung im Ferienhaus und
• „Flatsharing“ mit einer Übernachtung im Hotel
verglichen.

Die NsB-Angebotsform "Wohnungs- / Haustausch" wurde nicht quantifiziert.

Die Herleitung und Beschreibung der Untersuchungsfälle (NsB-Angebotsformen und Referenzfälle) werden im Folgenden beschrieben. Dabei wird jeweils auf die Themenbereiche Wohnen und Reisen eingegangen.
2 Wohnen: Cohousing - Gemeinschaftsräume und Wohngemeinschaften

Das Themenfeld Wohnen umfasst zwei NsB-Angebotsformen, die untersucht und mit entsprechenden Referenzfällen verglichen werden (siehe Tabelle 1).

Tabelle 1: Untersuchte NsB-Angebotsformen - Wohnen

<table>
<thead>
<tr>
<th>Themenfeld</th>
<th>Herleitung der Referenz</th>
<th>Referenz</th>
<th>NsB-Angebotsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnen</td>
<td>Durchschnittswohnung</td>
<td>1-Personen-Haushalt</td>
<td>Cohousing - Gemeinschaftsräume</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Wohn-D</td>
<td>1PHH</td>
<td>Cohousing</td>
</tr>
</tbody>
</table>

2.1 Beschreibung des Untersuchungsgegenstands

2.1.1 Cohousing

Die REPA knüpft an die Beschreibung und Analyse des Innovationsgegenstandes im Rahmen der Diffusionsanalyse (Clausen und Uhr 2016) an und fokussiert dabei auf die ökologischen Wirkungen der unterschiedlichen Wohnungskonzepte. Untersucht wird, wie sich der Ressourcenverbrauch durch die Auslagerung der Aktivität Waschen aus der privaten Wohnung in eine gemeinschaftliche Waschküche und durch die Bereitstellung und Nutzung einer Gemeinschaftswohnung als Multifunktionsraum verändert. Außerdem wird die Bereitstellung eines Sets an gemeinschaftlich nutzbaren Werkzeugen (anstatt individueller Werkzeug-Sets je Haushalt) in die Analyse einbezogen.

Die Verbreitung von Cohousing-Projektten in Deutschland ist gering (vgl. Clausen und Uhr 2016), da es sich v.a. um anspruchsvolle Wohnprojekte (z. B. Ökosiedlungen) handelt, die mit hohen Kosten (Wohneigentum) und Zeitaufwand verbunden sind.

\[\text{\footnotesize 1 Die Nutzung einer Sauna wurde in Clausen und Uhr (2016) nur zum Teil als relevant eingestuft. Außerdem sind daraus keine Einsparpotenziale zu erwarten (keine Verlagerung aus privaten Wohnungen in Mehrparteienhäusern), sodass dieser Typ eines Gemeinschaftsräumes nicht betrachtet wird.}\]

2.1.2 Wohngemeinschaften

Ergänzend werden diese "Mehrpersoonaushalte" statistisch unterteilt, in solche, in denen Menschen mit Verwandtschaftsverhältnissen wohnen und solche, in denen nicht verwandte Menschen wohnen (mit Verwandtschaft ca. 5%, nur mit Familienfremden ca. 6%). Da zur ersten Kategorie methodisch aber auch "gegebenenfalls Nichtverwandte" zählen und der Charakter einer WG in beiden Fällen gleich scheint, wird eine solche Differenzierung für die folgenden Berechnungen als nicht notwendig erachtet (Bundeszentrale für Politische Bildung u. a. 2016, 49). Sodass die Gesamtheit der "Alleinstehenden in Mehrpersonenhaushalten" als Annahme für die Potenzialanalysen dient.

2.2 Definition der funktionellen Einheit

In der Untersuchung wird der Materialinput (kg) des jeweiligen Referenzsystems auf das gemeinschaftliche Wohnen pro Person und Jahr bezogen, so dass eine Vergleichbarkeit zwischen den Wohnformen gegeben ist. Dementsprechend werden als Ergebnis Materialintensitätswerte (Material Footprint) mit der Einheit „kg/Person/Jahr“ und die Treibhauspotenziale (Carbon Footprint) in "kg CO\(_{2}\)eq/Person/Jahr“ ausgewiesen.

\(^2\) Im Rahmen des Mikrozensus findet eine repräsentative Befragung von zufällig ausgewählten rund 830.000 Personen aus 370.000 Haushalten statt. Es handelt sich dabei um eine amtliche Statistik. Als Alleinstehende in einem Mehrpersonenhaushalt werden dort Personen bezeichnet, die ohne Ehe- beziehungsweise Lebenspartner/-in und ohne Kinder, in einem Haushalt zusammen wohnen. (Statistisches Bundesamt 2012; https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Bevoelkerung/Mikrozensus.html)
2.3 Analyserahmen und zentrale Annahmen

Tabelle 2 gibt einen Überblick über die zentralen Annahmen der NsB-Angebotsformen im Themenfeld Wohnen. Die Annahmen werden im Folgenden dargestellt.

Tabelle 2: Überblick über zentrale Annahmen - Wohnen

<table>
<thead>
<tr>
<th>Wohnungseinheit</th>
<th>Durchschnittswohnung (Herleitung der Referenz)</th>
<th>1-Personenhaushalt (Referenz)</th>
<th>Cohousing</th>
<th>Wohngemeinschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnfläche</td>
<td>91,4 m²</td>
<td>67,1 m²</td>
<td>86,7 m²</td>
<td>91,2 m²</td>
</tr>
<tr>
<td></td>
<td>(privater Wohnfläche und 5,3 m² gemeinschaftlich genutzter Wohnraum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bewohner*innen</td>
<td>2,2</td>
<td>1</td>
<td>2,2</td>
<td>2,8</td>
</tr>
<tr>
<td>Energieverbrauch (pro Wohnung und Jahr)</td>
<td>3.644 kWh Strom</td>
<td>1.656 kWh Strom</td>
<td>3.726 kWh Strom</td>
<td>4.638 kWh Strom</td>
</tr>
<tr>
<td></td>
<td>13.603 kWh Raumwärme und Warmwasser</td>
<td>9.986 kWh Raumwärme und Warmwasser</td>
<td>12.450 kWh Raumwärme und Warmwasser</td>
<td>13.618 kWh Raumwärme und Warmwasser</td>
</tr>
<tr>
<td>Wasserverbrauch (pro Wohnung und Jahr)</td>
<td>97,2 m³</td>
<td>44,2 m³</td>
<td>99,4 m³</td>
<td>123,7 m³</td>
</tr>
</tbody>
</table>

Quellen: Eigene Annahmen basierend auf (Statistische Ämter des Bundes und der Länder 2015), (Statistisches Bundesamt 2015b), (Umweltbundesamt 2014), (BMWi 2016).

2.3.1 Referenz: Durchschnittswohnung und 1-Personen-Haushalt

Als Referenzwohnung wird ein 1-Personenhaushalt angenommen, der basierend auf einer Durchschnittswohnung mit einer durchschnittlichen Haushaltsgröße und durchschnittlichen Verbräuchen in Deutschland hergeleitet wurde. An die Grundannahmen, die eine Durchschnittswohnung definieren, knüpft auch die Herleitung der Annahmen für die untersuchten NsB-Angebotsformen an.

Der Untersuchungsrahmen wurde zusammengesetzt aus Annahmen zu Haushaltsgröße, Wohnfläche, Energieverbrauch, Wasserverbrauch, Wohnungsbau und Haushaltsausstattung. Zunächst wurde eine Durchschnittswohnung definiert. Diese Daten wurden genutzt, um einen rechnerischen 1 Personen-Familienhaushalt zu bestimmen und darauf aufbauend die beiden NsB-Angebotsformen in einem konsistenten Untersuchungsrahmen abzubilden. Die Annahmen wurden jeweils unterschiedlich skaliert, einerseits nach Haushaltsgröße und andererseits nach Wohnfläche (Erläuterungen s.u.).

Durchschnittswohnung

Für die Berechnung eines 1 Personenhaushalts wurden zunächst die durchschnittliche Haushaltsgröße und die mittlere Wohnfläche einer "Durchschnittswohnung" ermittelt:

- Haushaltsgröße: In 2011 verteilen sich die 81,8 Mio. Einwohner*innen in Deutschland auf 37,6 Mio. Haushalte, woraus sich eine durchschnittliche Haushaltsgröße von 2,2 Personen ergibt (Statistische Ämter des Bundes und der Länder 2015). Da Daten nach 2011 nur als Hochrechnungen existieren und diese Angaben - ohne erkennbaren Grund - stark von denen...
aus dem Jahr 2011 abweichen, wird auf die oben dargestellten Werte des Mikrozensus für das Jahr 2011 zurückgegriffen.

- **Wohnfläche**: In 2014 gibt es im Bundesgebiet insgesamt ca. 41,2 Mio. Wohnungen mit einer mittleren Wohnfläche von 91,4 m² (91,1 m² in 2011) (Statistisches Bundesamt 2015b).

Die Grundannahmen zum entsprechenden **Energieverbrauch** und **Wasserverbrauch** wurden ebenfalls bestimmt, wobei jeweils die Daten verwendet wurden, die am aktuellsten sind (d.h. die zugrundeliegenden Jahre unterscheiden sich leicht):

- Im Jahr 2013 hat jede Person täglich rund 121 Liter Wasser verbraucht (Umweltbundesamt 2014), das entspricht 0,121 m³ pro Tag und 44,2 m³ pro Jahr. Setzt man diesen Wert in Bezug zu den durchschnittlichen 2,2 Personen (Haushaltgröße), werden pro Haushalt und Jahr damit durchschnittlich 97,2 m³ Wasser benötigt.

- Für Privathaushalte beträgt der kumulierte Energieverbrauch für Raumwärme und Warmwasser in 2015 ca. 1.840PJ (BMWi 2016). Je Haushalt ergibt sich damit ein durchschnittlicher Verbrauch von 13.603 kWh, der sich auf verschiedene Energieträger aufschlüsseln lässt. So entfallen 24,4 % auf Öl, 45,9 % auf Gas, 5,3 % auf Strom, 8,5 % auf Fernwärme, 1,7 % auf Kohle und 14,3 % auf Erneuerbare Energien (BMWi 2016).

- Um eine Doppelzählung des Stromverbrauchs zu vermeiden, wurde der Anteil des Stromverbrauchs durch Raumwärme und Warmwasser in den folgenden Berechnungen des Material Footprints und des Carbon Footprints vom Gesamtstromverbrauch abgezogen, sodass der in die Berechnungen eingeflossene Haushaltsstromverbrauch auf 2.329 kWh sinkt.

- Den gesamten Berechnungen wurde der konventionelle Strommix Deutschland zugrunde gelegt und in einer Sensitivitätsanalyse ein Strommix, der auf Ökostrom basiert, betrachtet.

Die Daten für den **Wohnungsbau** basieren auf den Projektergebnissen des SusLab Projektes, die auf einer Primärerhebung in 16 Haushalten und eigenen Berechnungen für Baumaterialien und Ausstattung der Wohnungen (z. B. Sanitäranlagen) beruhen auf (Greiff et al. 2017)³ Die auf dieser Grundlage modellierte (SusLab-)Wohnung verfügt über eine Wohnfläche von 75 m² (genutzt von 2,2 Personen). Bei sechs Parteien pro Wohneinheit wird von einer gemeinschaftlich nutzbaren Fläche (z. B. Waschküche) von insgesamt 80 m² ausgegangen. Jedem Haushalt werden davon 13,3 m² zugerechnet. Damit ergibt sich eine Gesamtfläche von 88,3 m² pro Durchschnittshaushalt. Die Erhebung in den Haushalten beruht auf einer genauen Erfassung u.a. der Wandlängen, Anzahl und Material der Türen und Fenster, Bodenbeläge sowie der Dämmung.

Die Daten wurden (inkl. Annahmen für die unterschiedliche Lebensdauer der jeweiligen Materialien) für die folgenden Baumaterialien ermittelt und für die Berechnungen genutzt:

- Wandsubstanz / Decken,
- Verkleidung,
- Dämmung,
- Dach,
- Treppenhaus,
- Rohrleitungen,
- Fenster,
- Türen,
- Sanitär- und Heizungsanlagen.

Die Ausstattung der Wohnungen (bzw. gemeinschaftlichen Wohnformen) basiert ebenfalls auf den Ergebnissen der SusLab Haushaltserhebungen, da die statistischen Daten zur Haushaltsausstattung (Statistisches Bundesamt 2017) nur Zahlen für ausgewählte Haushaltsgüter bereitstellen (Unterhaltungselektronik, Informations- und Kommunikationstechnik, Haushalts- und sonstige Geräte). Die im Rahmen der SusLab Haushaltserhebung erhobenen Daten, erlauben es eine größere Bandbreite an Gütern abzudecken, wie beispielsweise:

- Kleidung,
- Heim- und Haustextilien,
- Möbel,
- elektrische Kleingeräte & Elektronische Geräte,
- elektrische Großgeräte,
- Bücher & Zeitschriften,
- Werkzeuge und
- Spiel- und Sportgeräte.

Diese Daten der Haushaltsausstattung wurden gruppiert und gemittelt nach Anzahl der Personen. Dafür wurden die SusLab Haushalte nach 1 Person, 2 und 3 Personenhaushalte geclustert, wobei die Ergebnisse aus Haushalten mit 1 Person der Ausstattung des 1-Personen-Haushalts, die 2 Personen der Ausstattung der Durchschnittswohnung und des Cohousings und die 3 Personen der Ausstattung der WG zuordnet wurden. Es wurde auch eine Sensitivitätsanalyse zwischen Daten der Einkommens- und Verbrauchsstichproben (amtliche Statistik) und SusLab Daten für die Güter vorgenommen, die in beiden Datensets ausgewiesen werden (siehe Kapitel 2.4).

Weitere zentrale Annahmen

Um aus den Daten der Durchschnittswohnung Wohnungen mit veränderten Kennzahlen wie Haushaltsgröße, Wohnfläche, Stromverbrauch und Energieverbrauch für Raumwärme und Warmwasser sowie Ausstattung abzuleiten, werden folgende Zusammenhänge näherungsweise angenommen:
• Die Aufwendungen für den Wohnungsbau ändern sich linear mit der Wohnfläche.
• Die Verbräuche von Leitungswasser und Strom ändern sich linear mit der Anzahl der Bewohner*innen.
• Der Energieverbrauch für Raumwärme und Warmwasser ändert sich linear mit der Wohnfläche.

Referenz: 1-Personen-Haushalt

Zur Berechnung des Referenzfalls wurden folgende Annahmen getroffen:
• Die durchschnittliche Wohnfläche in einem 1-Personenhaushalt beträgt 67,1 m² (Statistisches Bundesamt 2013).
• Der Energieverbrauch für Heizen und Warmwasseraufbereitung beträgt 9.986 kWh.
• Der Stromverbrauch beträgt 1.656 kWh.
• Der Verbrauch an Leitungswasser beziffert sich auf 44,2 m³.

Die Annahmen sind in Tabelle 2 dargestellt.

2.3.2 Cohousing - Gemeinschaftsräume

Zur Berechnung des NsB-Angebotes „Cohousing – Gemeinschaftsräume“ wurden folgende Annahmen getroffen:
• Es wird von einer Wohnfläche ausgegangen, die 86,7 m² beträgt und sich aus 81,4 m² privater Wohnfläche und 5,3 m² gemeinschaftlich genutzten Wohnraums zusammensetzt. Der für das gesamte Wohngebäude zur Verfügung stehende gemeinschaftliche Wohnraum summiert sich auf 100 m² und besteht in Anlehnung an die Baugruppe Malerstraße in Wuppertal⁴ aus einer zusätzlichen Wohnung, die für Familienfeste, Geburtstagsfeiern etc. genutzt werden kann, sowie einer Waschküche und einem Werkraum, ausgestattet mit Werkzeugen. Es wird angenommen, dass die Gemeinschaftsräume an drei Tagen je Woche genutzt werden, die Auslastung liegt demnach bei 43 %.
• Die Anzahl der Bewohner*innen beträgt ebenso wie im Durchschnittshaushalt 2,2 Personen.
• Der Energieverbrauch für Heizen und Warmwasseraufbereitung beträgt 12.450 kWh.
• Die Nutzung der Gemeinschaftsräume und der damit einhergehenden Verbräuche von Energie, Strom und Wasser wird anteilig der betrachteten Wohnung zugerechnet.
• Der Stromverbrauch liegt dadurch inkl. Wärme bei 3.726 kWh.
• Der Wasserverbrauch beziffert sich auf 99,4 m³ je Haushalt.

Die Annahmen sind in Tabelle 2 dargestellt.

Das Cohousing-Projekt unterscheidet sich von der Durchschnittswohnung vor allem in der Ausstattung. Die gemeinschaftlich nutzbaren Räume umfassen eine Waschküche, in der zwei

⁴ persönliche Mitteilung vom 30.5.2016, Informationen zur Baugruppe: http://www.malerstrasse.de
Waschmaschinen und ein Wäschetrockner zur Verfügung stehen, einen Werkraum, ausgestattet mit Werkzeugen sowie eine zusätzliche Wohnung, die für Geburtstagsfeiern und Familienfeste genutzt werden kann.

Aufgrund der dadurch geschaffenen Ausgangssituation wurde die privaten Wohnfläche pauschal 10 m² verringert (im Vergleich zur Durchschnittswohnung), da der Platzbedarf für die zur gemeinsamen Nutzung zur Verfügung stehenden Güter entfällt und davon ausgegangen werden kann, dass sich dies in der Wohnungsgröße widerspiegelt.

Die gemeinschaftliche Nutzung dieser Geräte wurde mit 1/19 der privaten Wohnung zugerechnet (basierend auf den Angaben der Baugruppe Malerstraße mit 19 Wohneinheiten; die Praxisräume der Baugruppe wurden nicht berücksichtigt).

2.3.3 Wohngemeinschaften (WG)

Zur Berechnung der WG wurden folgende Annahmen getroffen:

- Die Wohnfläche beträgt 91,2 m².
- Die Anzahl der Bewohner*innen beträgt 2,8.
- Der Energieverbrauch für Heizen und Warmwasseraufbereitung liegt bei 13.618 kWh pro Wohnung und Jahr.
- Der Stromverbrauch beträgt 4.638 kWh pro Wohnung und Jahr inkl. Wärme.
- Der Verbrauch an Leitungswasser beträgt 1,27 m³ pro Wohnung und Jahr.

Die Annahmen sind in Tabelle 2 dargestellt.

Tabelle 3: Stichprobe www.wg-gesucht.de

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Ort</th>
<th>Anzahl Bewohner*innen</th>
<th>Wohnfläche gesamt</th>
<th>Ausstattung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hamburg</td>
<td>3</td>
<td>107</td>
<td>--- Waschmaschine, Spülmaschine</td>
</tr>
<tr>
<td>2</td>
<td>Hamburg</td>
<td>3</td>
<td>64</td>
<td>--- Waschmaschine, Spülmaschine</td>
</tr>
<tr>
<td>3</td>
<td>Hamburg</td>
<td>2</td>
<td>65</td>
<td>Waschmaschine, Spülmaschine, Fahrradkeller, Küche</td>
</tr>
<tr>
<td>4</td>
<td>Hamburg</td>
<td>2</td>
<td>65</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Hamburg</td>
<td>2</td>
<td>111</td>
<td>--- Waschmaschine, Spülmaschine, Küche</td>
</tr>
<tr>
<td>6</td>
<td>Berlin</td>
<td>2</td>
<td>103</td>
<td>Waschmaschine, Küche</td>
</tr>
<tr>
<td>7</td>
<td>Berlin</td>
<td>4</td>
<td>154</td>
<td>Spülmaschine, Küche, Kühlschrank</td>
</tr>
<tr>
<td>8</td>
<td>Berlin</td>
<td>2</td>
<td>75</td>
<td>--- Waschmaschine, Spülmaschine, Küche</td>
</tr>
<tr>
<td>9</td>
<td>Berlin</td>
<td>3</td>
<td>90</td>
<td>--- Waschmaschine, Küche</td>
</tr>
<tr>
<td>10</td>
<td>Berlin</td>
<td>3</td>
<td>93</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Berlin</td>
<td>3</td>
<td>70</td>
<td>--- Waschmaschine, Spülmaschine, Küche</td>
</tr>
<tr>
<td>12</td>
<td>Berlin</td>
<td>2</td>
<td>90</td>
<td>--- Waschmaschine, Küche</td>
</tr>
</tbody>
</table>
Die Ergebnisse der SusLab-Haushalterhebungen aus den Haushalten mit 3 Personen wurden für die Ausstattung der WG genutzt.

2.4 Ergebnisse der Materialintensitätsanalyse Wohnen

Abbildung 1 zeigt den Materialbedarf und das Treibhauspotenzial im Überblick.

Abbildung 1: Vergleichende Ergebnisse Wohnen - Material und Carbon Footprint

Für beide Indikatoren zeigt sich, dass die Wohngemeinschaft am besten abschneidet mit einem Material Footprint von 11.592 kg / Person / Jahr und einem Carbon Footprint von 2.722 kg CO₂eq /

Der **Material Footprint** setzt sich aus den Verbrauchsgruppen Stromverbrauch, Energieverbrauch (Heizung, Warmwasser), der Bereitstellung von Leitungswasser, der Ausstattung eines Haushaltes und dem Wohnungsbau zusammen (siehe Abbildung 2).

Abbildung 2: Material Footprint nach Verbrauchsgruppen (links: in kg / Person / Jahr; rechts: in %)

Über alle betrachteten Wohnformen hinweg bedingt der Energieverbrauch (Strom, Wärme für Heizung und Warmwasser) den größten Materialbedarf. Die beiden NsB-Angebotsformen unterscheiden sich jedoch nicht wesentlich. Der Stromverbrauch der WG bedingt einen Material Footprint (MF) von 5.698 kg/Person/Jahr (49% des MF) und der des Cohousing 5.689 kg/Person/Jahr (41% des MF). Der Energieverbrauch für Heizung und Warmwasser einer WG hat einen leicht geringeren MF von 2.837 kg/Person/Jahr (24% des MF). Beim Cohousing beträgt der MF des Energieverbrauchs für Heizung und Warmwasser 3.302/Person/Jahr (24% des MF).

Der Wohnungsbau hat einen relativ geringen Anteil am Material Footprint, da die Baumaterialien im Vergleich bspw. zur Ausstattung über eine relativ lange Lebensdauer verfügen (z.B. 25 Jahre für Sanitäranlagen, bis zu 100 Jahre für Wände und Decken. Für beide Wohnformen liegt der errechnete
Materialbedarf bei ca. 400 - 490 kg/Jahr/Person (3% des MF). Der Material Footprint zur Bereitstellung von Leitungswasser ist gering (WG: 0,8%, Cohousing: 0,7%).

Abbildung 3: Material Footprint - Ausstattung

Anteilig am Carbon Footprint (gesamt) macht bei der WG der Stromverbrauch 32% und der Energieverbrauch (Heizung und Warmwasser) 48% aus. Beim Cohousing macht der Stromverbrauch 28% und der Energieverbrauch (Heizung und Warmwasser) 50% aus. In absoluten Zahlen ist der Carbon Footprint für Strom und Wärmeenergie in der WG geringer als beim Cohousing (Stromverbrauch: 873 kg CO₂eq / Person / Jahr in der WG und 871 kg CO₂eq / Person / Jahr beim Cohousing; Wärmenergie: WG 1.310 kg CO₂eq / Person / Jahr und Cohousing 1.524 kg CO₂eq / Person / Jahr).

Der Anteil der Haushaltsausstattung liegt bei 17% (WG) bzw. mit 19% (Cohousing) des Carbon Footprints. Abbildung 5 zeigt die differenzierte Darstellung nach Haushaltsgütern. Der Carbon Footprint des Wohnungbaus ist mit 2% gering.
Aufgrund der hohen Bedeutung der Verbrauchsgruppen Strom und Ausstattung wurden dazu Sensitivitätsanalysen in Bezug auf den Strommix und eine veränderte Ausstattung durchgeführt.

Die **Ausstattung** der Wohnungen wurde mit Daten einer nicht repräsentativen Haushaltsbefragung (Greiff et al. 2017) - deren Daten dieser Studie zugrunde liegen - berechnet, um die Bandbreite der realen Haushaltsgüter abbilden zu können. Um die Sensitivität gegenüber repräsentativ erhobenen Daten zu ermitteln wurde der Datensatz der EVS für die verfügbaren Haushaltsausstattungen mit ausgewählten Haushaltsgütern herangezogen.

Die Daten der EVS umfassen die Haushaltsgüter: Unterhaltungselektronik, Informations- und Kommunikationstechnik, Haushalts- und sonstige Geräte. Die Ausstattung pro 100 Haushalte wird für Haushalte mit 1 bis 5 Personen angegeben (Anzahl der Güter je 100 Haushalte (Ausstattungsbestand). Es konnten 17 Haushaltsgüter ausgewertet werden, die dem Datensatz der NsB-Ress Erhebung zuzuordnen waren. Der Ausstattungsbestand wurde für die Haushalte mit 1 bis 3 Personen für diese Güter identifiziert und auf die Ausstattung pro Person berechnet. Waschmaschine und -trockner wurden ggf. anteilig einberechnet (siehe Systematik NsB-Ress Datensatz). Daraus ergibt sich für die untersuchten Wohnformen der in

<table>
<thead>
<tr>
<th>Wohn-D</th>
<th>1 PHH</th>
<th>Cohousing</th>
<th>WG</th>
</tr>
</thead>
<tbody>
<tr>
<td>-38%</td>
<td>-34%</td>
<td>-39%</td>
<td>-47%</td>
</tr>
<tr>
<td>-29%</td>
<td>-22%</td>
<td>-31%</td>
<td>-34%</td>
</tr>
</tbody>
</table>

Abbildung 6: Sensitivität Strommix, Änderungen des Material und Carbon Footprint Gesamt
Tabelle 4 dargestellte Ausstattungsbestand.

Die Berechnungen des Material und Carbon Footprint mit dem so angepassten Datensatz zeigt deutliche Unterschiede. Der Material Footprint der Ausstattung nach EVS ist um 3% höher (WG) bis zu 34% niedriger (Cohousing) als bei der Abschätzung basierend auf dem SusLab Datensatz. Die Unterschiede sind bedingt durch einerseits die größere Bandbreite der Ausstattungsgüter und die andererseits geringere Detailtiefe des Ausstattungsgrades der Geräte des SusLab Datensatzes.
Tabelle 4: Ausstattung der NsB-Ress Wohnformen nach EVS (Ausstattungsbestand)

<table>
<thead>
<tr>
<th>Haushaltsgüter der EVS</th>
<th>Wohn-D (2 Personen)</th>
<th>1PHH (1 Person)</th>
<th>Cohousing (2 Personen)</th>
<th>WG (3 Personen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlschrank</td>
<td>0,34</td>
<td>0,53</td>
<td>0,34</td>
<td>0,22</td>
</tr>
<tr>
<td>Gefrierschrank</td>
<td>0,36</td>
<td>0,34</td>
<td>0,36</td>
<td>0,24</td>
</tr>
<tr>
<td>Kühl/Gefrierschrankkombi</td>
<td>0,34</td>
<td>0,53</td>
<td>0,34</td>
<td>0,22</td>
</tr>
<tr>
<td>Geschirrspülmaschine</td>
<td>0,41</td>
<td>0,49</td>
<td>0,41</td>
<td>0,30</td>
</tr>
<tr>
<td>Waschmaschine</td>
<td>0,50</td>
<td>0,90</td>
<td>0,05</td>
<td>0,34</td>
</tr>
<tr>
<td>Wäschetrockner</td>
<td>0,23</td>
<td>0,23</td>
<td>0,02</td>
<td>0,18</td>
</tr>
<tr>
<td>Mikrowelle</td>
<td>0,40</td>
<td>0,65</td>
<td>0,40</td>
<td>0,30</td>
</tr>
<tr>
<td>Kaffeemaschine</td>
<td>0,65</td>
<td>0,98</td>
<td>0,65</td>
<td>0,48</td>
</tr>
<tr>
<td>Fernseher</td>
<td>0,92</td>
<td>1,27</td>
<td>0,92</td>
<td>0,71</td>
</tr>
<tr>
<td>Laptop</td>
<td>0,47</td>
<td>0,64</td>
<td>0,47</td>
<td>0,47</td>
</tr>
<tr>
<td>Rechner-Bildschirm-Kombination</td>
<td>0,35</td>
<td>0,38</td>
<td>0,35</td>
<td>0,30</td>
</tr>
<tr>
<td>Tablet</td>
<td>0,19</td>
<td>0,18</td>
<td>0,19</td>
<td>0,23</td>
</tr>
<tr>
<td>DVD/BlueRay-Player</td>
<td>0,46</td>
<td>0,67</td>
<td>0,46</td>
<td>0,41</td>
</tr>
<tr>
<td>Drucker</td>
<td>0,48</td>
<td>0,67</td>
<td>0,48</td>
<td>0,36</td>
</tr>
<tr>
<td>Festnetztelefon</td>
<td>0,69</td>
<td>0,98</td>
<td>0,69</td>
<td>0,48</td>
</tr>
<tr>
<td>Smartphone</td>
<td>0,91</td>
<td>1,02</td>
<td>0,91</td>
<td>0,86</td>
</tr>
<tr>
<td>Kamera</td>
<td>0,79</td>
<td>1,07</td>
<td>0,79</td>
<td>0,64</td>
</tr>
</tbody>
</table>

Da die Ausstattung im Gesamtergebnis der Berechnungen eine mittlere Relevanz hat, zeigen sich die Unterschiede für den Gesamtrucksack anteilig als eher gering. Der Material Footprint der Ausstattung nach EVS unterscheidet sich zwischen -1 bis +11% im Vergleich zur Ausstattung nach SusLab Daten. Der Carbon Footprint der Ausstattung nach EVS unterscheidet sich zwischen -1 bis +3% im Vergleich zur Ausstattung nach SusLab Daten (siehe Abbildung 7).

Abbildung 7: Sensitivität Haushaltsausstattung, Darstellung der Änderung des Material und Carbon Footprint Gesamt

Erläuterung: positive Werte = EVS < SUSLab, negative Werte = EVS > SUSLab
2.5 Ergebnisse der Potenzialanalyse Wohnen

Die Entwicklung der Wohnformen in Deutschland und damit die Potenziale für NsB-Angebotsformen im Themenfeld Wohnen lassen sich nur grob für die Wohngemeinschaften abschätzen. Das Cohousing ist statistisch nicht verortet und es fehlen Datengrundlagen, sodass keine Hochrechnung vorgenommen werden kann.

Die Ergebnisse der Haushaltsvorausberechnung lassen sich nicht direkt nutzen, da keine Unterscheidung zwischen Alleinstehenden in Mehrpersonenhaushalten und Mehrpersonenhaushalten (z.B. als Familie) vorgenommen wird. Es lassen sich Entwicklungstrends nutzen. Die Haushaltsvorausberechnung zeigt bei der Variante "Trendentwicklung" für die Jahre 2010 bis 2030 die folgende Entwicklung:

- Sinkende Bevölkerungszahl (von 81,67 Mio. auf 77,22 Mio.);
- Steigende Zahl der Einpersonenhaushalte (von 15,72 Mio. auf 18,32 Mio.);
- Sinkende Zahl der Mehrpersonenhaushalte mit 3 und mehr Personen; die Zahl der MPH mit 2 Personen weist als einzige einen steigenden Trend auf;
- Sinkende durchschnittliche Haushaltsgröße (von 2,04 auf 1,88);

Die Vorausberechnungen unterstützen damit im Wesentlichen nicht die These, dass eine Erhöhung gemeinschaftlicher Wohnformen durch WGs bis 2030 stattfinden wird.

Tabelle 5 zeigt die Herleitung basierend auf der jährlichen Veränderung zwischen 2010 und 2015.

In der „Trendentwicklung“ wurde eine lineare Fortschreibung angenommen, die zu einer Zunahme der Alleinstehenden in Mehrpersonenhaushalten um 64% auf 2,83 Mio. und einer Zunahme der Alleinlebenden in 1 PHH um 17% auf 18,32 Mio. führt.

In der Variante "NsB-Ress Entwicklung" wurde angenommen, dass die Zunahme insgesamt konstant bleibt (Summe) ebenso wie die Anzahl der Alleinlebenden in 1 PHH ab 2016. Die jährlichen Steigerungen der Alleinlebenden aus der Trendfortschreibung wurden den Alleinstehenden in MPH zugeschlagen. Heraus resultiert eine Zunahme der Alleinstehenden in Mehrpersonenhaushalten um 170% auf 4,68 Mio. und einer Zunahme der Alleinlebenden in 1 PHH um 5% auf 16,46 Mio. Diese Variante ist eher willkürlich gesetzt, um eine Lenkungswirkung zu mehr WGs abzubilden und die möglichen Ressourceneffizienzpotenziale aufzeigen zu können.
Die Entwicklung der Anzahl der beiden Wohnformen wurden mit dem berechneten Material Footprint multipliziert, d.h. den Alleinlebenden im 1 PHH wurde der MF des 1 PHH zugerechnet und den Alleinstehenden wurde der MF der WG zugeordnet. Abbildung 8 stellt die Ergebnisse für den Material Footprint im Zeitraum 2010 bis 2030 dar.

Beide Szenarien zeigen einen Anstieg des Material Footprints von 2010 bis 2030. In der Differenz des gesamten Material Footprints lassen sich näherungsweise ca. 1,385 Mrd. kg Ressourcen einsparen bzw. ca. 3,3 %.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Summe in MPH</th>
<th>Summe in 1 PHH</th>
<th>jährliche Veränderung in MPH</th>
<th>jährliche Veränderung in 1 PHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>17 442</td>
<td>17 418</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>2011</td>
<td>17 074</td>
<td>17 052</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>2012</td>
<td>17 465</td>
<td>17 451</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>2013</td>
<td>17 648</td>
<td>17 629</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>2014</td>
<td>17 971</td>
<td>17 947</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>2015</td>
<td>18 600</td>
<td>18 576</td>
<td>2039</td>
<td>2039</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trendfortschreibung</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alleinstehende</td>
<td>17 442</td>
<td>17 074</td>
<td>17 465</td>
<td>17 648</td>
<td>17 971</td>
<td>18 600</td>
</tr>
<tr>
<td>Alleinlebende</td>
<td>17 418</td>
<td>17 052</td>
<td>17 451</td>
<td>17 629</td>
<td>17 947</td>
<td>18 576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alleinstehende</td>
<td>17 442</td>
<td>17 074</td>
<td>17 465</td>
<td>17 648</td>
<td>17 971</td>
<td>18 600</td>
</tr>
<tr>
<td>Alleinlebende</td>
<td>17 418</td>
<td>17 052</td>
<td>17 451</td>
<td>17 629</td>
<td>17 947</td>
<td>18 576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trendfortschreibung</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe in MPH</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Summe in 1 PHH</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Die Ergebnisse der „NsB-Ress Entwicklung“ zeigen einen gesamten Anstieg von 17%, wobei der MF für die Personengruppe „Alleinstehende in Mehrpersonenhaushalten“ um 63% und der MF der Personengruppe „Alleinlebende in 1 Personenhaushalten“ um 5% ansteigt. Absolut betragen die MF dabei insgesamt im Jahr 2010 ca. 196,7 Mrd. kg und in 2030 ca. 241,6 Mrd. kg der betrachteten zwei Personengruppen. Hierbei verteilen sich die MF zum einen bei den „Alleinstehende in Mehrpersonenhaushalten“ auf 17,9 Mrd. kg in 2010 und 50,8 Mrd. kg in 2030 und zum anderen bei den „Alleinlebende in 1 Personenhaushalten“ auf 178,8 Mrd. kg in 2010 und 190,8 Mrd. kg in 2030.
2.6 Zusammenfassung

Die Ergebnisse der REPA zu den NsB-Angeboten Cohousing und Wohngemeinschaft zeigen z.T. deutliche Ressourceneffizienzpotenziale im Vergleich zu den betrachteten Referenzfällen einer Durchschnittswohnung und einem 1 Personenhaushalt.

Ein ähnliches Gesamtbild zeigt sich beim Carbon Footprint, der durch den Energieverbrauch (Strom, Wärme) dominiert wird, allerdings deutlich stärker als beim Material Footprint. Anteilig am Carbon Footprint (gesamt) macht bei der WG der Stromverbrauch 32% und der Energieverbrauch (Heizung und Warmwasser) 48% aus. Beim Cohousing macht der Stromverbrauch 28% und der Energieverbrauch (Heizung und Warmwasser) 50% aus. Der Anteil der Haushaltsausstattung liegt bei 17% (WG) bzw. mit 19% (Cohousing) des Carbon Footprints. Der Carbon Footprint des Wohnungsbau ist mit 2% gering.

3 Reisen: Couchsurfing, Flatsharing, Wohnungs-/Haustausch

Das Themenfeld Reisen umfasst die zwei NsB-Angebotsformen „Couchsurfing“ und „Flatsharing“, die quantifiziert und denen zwei gängige Reiseformen gegenübergestellt werden. Die NsB-Angebotsform "Wohnungs- / Haustausch" wurde nicht quantifiziert.

3.1 Beschreibung des Untersuchungsgegenstands

3.1.1 Flatsharing

3.1.2 Couchsurfing

3.1.3 Wohnungs- / Haustausch

3.2 Definition der funktionellen Einheit

In der Untersuchung wird der Materialinput (kg) des jeweiligen Referenzsystems auf die Reise pro Person und Übernachtung bezogen, so dass eine Vergleichbarkeit zwischen den Reiseformen gegeben ist. Dementsprechend werden als Ergebnis Materialintensitätswerte (Material Footprint) mit der Einheit „kg/Person/Übernachtung“ und die Treibhauspotenziale (Carbon Footprint) in ”kg CO_{2eq}/Person/Übernachtung“ ausgewiesen.

3.3 Analyserahmen und zentrale Annahmen

Tabelle 6 gibt einen Überblick über die zentralen Annahmen der Modellierung der verschiedenen Reiseformen. Im Folgenden wird die Herleitung der Eckdaten erläutert.

Tabelle 6: Eckdaten und zentrale Annahmen der verschiedenen Reiseformen

<table>
<thead>
<tr>
<th></th>
<th>Hotel</th>
<th>Ferienwohnung</th>
<th>Flatsharing</th>
<th>Couchsurfing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Bewohner*innen</td>
<td>1,83</td>
<td>1 Reisende*r</td>
<td>1,83</td>
<td>1 Reisender und 2,2 Bewohnerinnen</td>
</tr>
<tr>
<td>Wohnfläche</td>
<td>k.A.</td>
<td>41 m²</td>
<td>91,4 m²</td>
<td>91,4 m²</td>
</tr>
<tr>
<td>Energieverbrauch für Heizung und Warmwasser (pro Jahr)</td>
<td>7.225 kWh</td>
<td>4.167 kWh</td>
<td>13.603 kWh</td>
<td>13.603 kWh</td>
</tr>
<tr>
<td>Stromverbrauch (pro Wohnung und Jahr)</td>
<td>3.660 kWh</td>
<td>442 kWh</td>
<td>3.031 kWh</td>
<td>5.300 kWh</td>
</tr>
<tr>
<td>Wasserverbrauch (pro Wohnung und Jahr)</td>
<td>138 m³</td>
<td>19 m³</td>
<td>81 m³</td>
<td>141 m³</td>
</tr>
<tr>
<td>Auslastung</td>
<td>60 %</td>
<td>30 %</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Um die Ressourcenverbräuche und Treibhausgasemissionen für das Reisen zu veranschaulichen, wurden zwei beispielhafte Reiseziele ausgewählt. Für diese wurden Material und Carbon Footprint jeweils für einen Wochenendtrip und den Haupturlaub berechnet, inklusive der Anreiseverbräuche mit verschiedenen Verkehrsmitteln.

Die Anreiseoptionen beinhalten Flugzeug, Bahn, Fernbus, PKW mit Besetzungsgrad 1 und PKW mit Besetzungsgrad 4. Die Annahmen für die Verbräuche und Emissionen pro Personenkilometer orientieren sich am Materialband Mobilität, Kapitel 1.3 (Bienge et al. 2016). Für den Besetzungsgrad 4 wurden die Angaben des PKW BG=1 entsprechend skaliert. Lediglich die Annahmen für die Verbräuche und Emissionen der Anreise mit dem Flugzeug sind OpenLCA entnommen, verwendet wurden der Prozess „transport, aircraft, passenger, Europe“ und das Schema „WI 2.4“. Die so gewonnen Daten pro Personenkilometer wurden auf die Entfernung der Reiseziele hochgerechnet, wobei jeweils von einer Abreise und Ankunft im Stadtzentrum ausgegangen wird. Im Falle des Reiseszenarios Köln – Küste wurde die Stadt Den Haag ausgewählt. Für die zurückgelegten Kilometer...
wurden die Streckenberechnungen von entfernungs.org genutzt, mit unterschiedlichen Wegen für Autostrecken, Bahnnetz und Flugzeug (hier Luftlinie) (entfernungs.org o.J.).

Die Unterkunftsoptionen vor Ort umfassen Couchsurfing, Hotel, Flatsharing und Ferienwohnung. Berücksichtigt wurden Verbräuche und Emissionen für Baumaterial, Stromverbrauch, Heizen und Wasserverbrauch. Die je nach Unterkunftsart variierenden Werte basieren auf den in 1.4.3.1 bis 1.4.3.4 dargestellten Annahmen.

3.3.1 Referenz: Hotel

Das Modell-Hotel ist ganzjährig geöffnet, die Auslastung liegt bei rund 60 %, während durchschnittlich 1,8 Gäste in einem Zimmer übernachten (Buchbinder Auron 2009). Die Fläche des Hotels in Norddeutschland setzt sich aus 25 m² a 45 Zimmer und 800 m² gemeinschaftlicher Fläche zusammen, woraus sich eine Summe von rund 43 m² pro Zimmer ergibt. Als Deckenhöhe werden 2,4 m angenommen. Über die angenommene Fläche wurde mit mithilfe der Datenbank ecoinvent 2.2 eine Maximalabschätzung des Rohstoffeinsatzes für den Bau des Hotels gemacht.

In (Bernard und Voss 2012) wurden in einer Stichprobe (n = 26) mittlere Verbrauchswerte von Hotels in Deutschland berechnet. Das Hotel verbraucht 3660 kWh Strom und 7225 kWh Wärme pro Zimmer pro Jahr. Der Wasserverbrauch liegt bei 138 m³ pro Zimmer und Jahr (Accor Communication and External Relations Department 2013).

Die Eckdaten sind in Tabelle 6 zusammengefasst.

3.3.2 Referenz: Ferienhaus

Das modellierte Ferienhaus basiert ebenfalls auf den Ferienhäusern auf Rügen (Dunschen 2015). Da diese aus klassischen Mehrparteienhäuser bestehen, wird das Haus analog zur Durchschnittswohnung (siehe Kapitel 2.3.1) modelliert und anhand der Wohnfläche skaliert. Die mittlere Wohnfläche in den drei betrachteten Anlagen mit insgesamt 22 Wohneinheiten beträgt 41 m².

Ebenfalls entstammen die Verbrauchsdaten den Befragungen für diese Arbeit. Spezifisch für jede Ferienwohnung ergibt sich damit ein Stromverbrauch von 442 kWh. Der mittlere Energieverbrauch für Raumwärme und Warmwasser beträgt 4167 kWh, während in jeder Wohnung im Schnitt 19 m³ Wasser verbraucht werden.

Die durchschnittliche Auslastung von Ferienwohnung lag im Juli 2014 bei 29,4 %. Gemeint ist hier die rechnerische Auslastung, die Anzahl der getätigten Übernachtungen wird durch die Anzahl der Bettentage dividiert (Statistisches Bundesamt 2015b).

Die Eckdaten sind in Tabelle 6 zusammengefasst.
3.3.3 Reisen – Flatsharing

Es gibt verschiedene Formen des Flatsharing. So gibt es Wohnungen, die in touristisch geprägten Städten wie Berlin oder Hamburg mehr oder minder dauerhaft an Touristen vermietet werden. In unserem Verständnis entspricht eine solche Nutzung als Ferienwohnung nicht einer gemeinschaftlichen Nutzung. Daher und weil es beispielsweise in Berlin schon Gesetzesänderungen gibt, die eine dauerhafte Vermietung untersagen, untersuchen wir die folgende Form des Flatsharing: Ein Wohnungsbewohner verreist für eine kurze Zeit und statt die Wohnung leer stehen zu lassen, vermietet er sie über ein Flatsharingportal für die Dauer der Abwesenheit. Es wird angenommen, dass die Wohnung in der Abwesenheit ebenso wie das Hotel von 1,8 Personen genutzt wird.

Darum wurde angenommen, dass die Unterkunft einer Durchschnittswohnung analog zu Kapitel 2.3.1 entspricht, auch die Verbrauchsdaten werden analog hierzu ermittelt. So liegt der Energieverbrauch für Raumwärme und Warmwasser bei 13.603 kWh. Der Stromverbrauch, der über die Anzahl der Reisenden skaliert wird, beträgt 3031 kWh und der Wasserverbrauch 81 m³.

Die Eckdaten sind in Tabelle 6 zusammengefasst.

3.3.4 Reisen – Couchsurfing

Die Eckdaten sind in Tabelle 6 zusammengefasst.

3.3.5 Datenqualität der zentralen Annahmen

Im Vorhinein war geplant, die Modellierung komplett analog zum Bereich Wohnen durchzuführen. Dies scheiterte jedoch leider an mangelnden und nicht vergleichbaren Daten. Dadurch entfiel die Betrachtung der Ausstattung der Reiseunterkünfte gänzlich. Für die verschiedenen Formen hätte es zwar mitunter Daten gegeben, beispielsweise für die Hotels die Arbeit von (Buchbinder Auron 2009) oder für das Couchsurfing bzw. die Durchschnittswohnung die Daten aus (Statistisches Bundesamt 2013). Jedoch divergieren die vorhandenen Daten in ihrer Qualität derart, dass wir entschieden, die Ausstattung aus der Analyse auszuklammern.

Auch die übrigen Daten sind in ihrer Qualität teilweise problematisch. So ergaben sich während der Modellierung mehrere Schwierigkeiten. Eines sind die verschiedenen Datenquellen einzelner Bereiche (z.B. der Stromverbrauch) und die damit einhergehende indifferente Qualität der Daten. Ein weiteres Problem, das auch bei guter Datenqualität auftritt, sind Stichproben, die zu klein sind, um auf die Grundgesamtheit zu schließen. Zu guter Letzt sind Daten, die aus Umfragen stammen, möglicherweise verzerrt. So können Mittelwerte durch nicht wahrheitsgetreu oder missverständlich ausgefüllte Fragebögen systematisch über- oder unterschätzt werden.

Die Zahlen für die Auslastung entstammen dem statistischen Bundesamt sowie einer Abschlussarbeit. Da die Effekte der Auslastung eng mit der Anzahl der Personen zusammenhängt,
beziehungsweise beide Größen direkt ineinander überführbar sind, wurde in zwei Fällen auf die Einberechnung der Auslastung sowie in einem anderen Fall der Anzahl der Personen verzichtet.

Auch die Daten für die Verbräuche entstammen keiner einheitlichen Quelle. Die Spanne reicht hier von Abschätzungen aus Daten des BMWi über in Hotels durchgeführten Stichproben. Die Daten für die Energieverbräuche der Ferienwohnung entstammen zwei von Ferienwohnungsbetreibern ausgefüllten Fragebögen. Hier ist also erstens die Anzahl sehr gering und auch die Daten selbst sind möglicherweise verzerrt, wenn die Betreiber zu niedrige Werte eintragen, um ein vermeintlich besseres, weil in der Umfrage energiesparendes, Ferienhaus zu führen. Dies könnte jedenfalls eine Erklärung für die vergleichsweise niedrigen Verbrauchswerte der modellierten Ferienwohnung sein.

Die Daten für den Bau der Übernachtungsmöglichkeiten stammen teilweise aus der Analyse des Sektors Wohnen und der dort berechnete Durchschnittswohnung. Die Fälle Couchsurfing, Ferienwohnung und Flatsharing sind Flächen-Skalierungen dieses Durchschnittshaushalts, das modellierte Hotel hingegen ist eine Maximalabschätzung aufbauend auf dem Hotel aus (Dunschen 2015).

3.4 Ergebnisse der Materialintensitätsanalyse Reisen: Flatsharing und Couchsurfing

Im Folgenden werden zunächst die ermittelten Ressourcenverbräuche und Emissionen pro Person und Tag für die verschiedenen Unterkunftsmöglichkeiten dargestellt. Im Anschluss werden die Hochrechnungen für zwei Reiseszenarien präsentiert, die neben den Materialintensitäten für das Wohnen am Urlaubsort auch die der Anreise einbeziehen.

3.4.1 Materialintensitäten

Der Materialaufwand für eine Übernachtung schwankt zwischen 26,3 und 59,3 kg pro Person. Der höchste Wert wird durch eine Übernachtung im Hotel verursacht, am besten schneidet der Fall Couchsurfing ab. Eine Übernachtung via Flatsharing hat einen Materialaufwand von 32 kg und eine Übernachtung in einem Ferienhaus 44,1 kg.

Der Carbon Footprint für eine Übernachtung liegt zwischen 6,1 und 13,6 kg CO₂. Am schlechtesten schneidet hier das Ferienhaus ab, das Hotel liegt mit 11,2 kg CO₂ knapp vor diesem. Den niedrigsten Wert erreicht erneut Couchsurfing mit 6,1 kg CO₂ gefolgt von der Übernachtung via Flatsharing mit 8,1 kg CO₂. Dargestellt ist eine Übersicht in Abbildung 9.
In Abbildung 10 sind die Materialaufwände nach den Verbrauchsgruppen Heizen, Strom-, Wasserverbrauch und Baumaterial dargestellt. Für den Großteil der Aufwände sind die Verbräuche aus Heizen und Strom verantwortlich. So liegen die Anteile des Heizens beim Couchsurfing bei 6,8 kg, beim Hotel bei 10,5 kg, beim Flatsharing bei 11,9 kg und am höchsten bei der Ferienwohnung mit 22,7 kg. Der Stromverbrauch erzielt Anteile zwischen 36,8 und 14,3 kg. Die prozentualen Anteile durch Heizen und Stromverbrauch liegen zwischen 80 % beim Hotel und 95 % beim Couchsurfing, womit an dieser Stelle auch der beste Hebel für eine Optimierung des Ressourcenverbrauchs zu sehen ist. Denn wie schon in Kapitel 2.4 gezeigt wurde, lässt alleine eine Umstellung von konventioneller zu Öko-Stromversorgung eine deutliche Reduktion der Materialaufwände zu.

Beim Carbon Footprint zeigt sich dies noch deutlicher, denn der Anteil durch Strom und Heizung liegt hier durchweg zwischen 93 und 97 %. Abgesehen von der Gesamtsumme unterscheiden sich diese lediglich in den Verhältnissen von Materialaufwänden durch Strom und denen durch Heizen. So liegt der Anteil durch Heizen beim Hotel bei unter 20 %, während dieser Anteil bei der Ferienwohnung bei über 50 % liegt. Ein umgekehrtes Bild zeigt sich für die Betrachtung der Aufwände durch den Stromverbrauch. Hier liegt der Anteil relativ mit ca. 65 % beim Couchsurfing am höchsten, dicht gefolgt von dem Hotel mit rund 60 %. Bei der Ferienwohnung hingegen liegt der Anteil bei unter 20 %.

Auffallend ist sowohl bei Material Footprint als auch bei Carbon Footprint, dass die Anteile aus Heizen und Stromverbrauch über alle Fälle hinweg am größten sind. Anteilsmäßig sinken diese in
keinem Fall deutlich unter 20 %. Die Anteile durch den Wasserverbrauch hingegen sind vernachlässigbar, während die Anteile durch den Bau variabel zwischen 5 und 20 % liegen.

Abbildung 10: Material Footprint nach Verbrauchsgruppen

Material Footprint nach Verbrauchsgruppen
in kg / Übernachtung / Person

Abbildung 10: Material Footprint nach Verbrauchsgruppen
skaliert auf 100%
3.4.2 Reisebeispiele inklusive Anreiseverbräuche

Ein Vergleich desselben Diagramms für verschiedene Reiseziele zeigt zudem, dass die Wahl des Reiseziels einen wichtigen Einfluss auf den Material Footprint hat, da der Anteil der Anreise insgesamt sehr groß ist und die Wahl eines weiter entfernten Ziels sich dementsprechend deutlich niederschlägt.

Innerhalb der Verkehrsmittel schneiden Fernbus, Bahn und der mit vier Personen besetzte PKW sehr viel besser ab als Flugzeug und PKW ohne Mitfahrende. Unter den Wohnoptionen vor Ort emittiert Couchsurfing am wenigsten, gefolgt von Flatsharing, Hotel und zuletzt der Übernachtung in einer Ferienwohnung.

Abbildung 13: Carbon Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall ‚Köln - Küste‘

Abbildung 14: Material Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall 'München - Madrid'

gewichtigen Anteile der Anreise am Gesamtverbrauch sich durch die Wahl eines weit entfernten Reiseziels schnell vervielfachen können.

Abbildung 15: Carbon Footprint bei variierter Aufenthaltsdauer und Anreisemittel für den Fall ‚München - Madrid‘

3.4.3 Wohnungs- und Haustausch

Wie bei Clausen und Uhr (2016) abgeschätzt, werden näherungsweise etwa 0,2 Promille der Übernachtungen im Beherbergungsgewerbe durch Wohnungs- und Haustausch erreicht (d.h. 100.000 Übernachtungen jährlich)⁵.

Eine Übernachtung im Hotel hat einen Material Footprint von 59,3 kg pro Person und eine Übernachtung in einem Ferienhaus hat einen Material Footprint von 44,1 kg pro Person. Basierend auf den Analysen der Wohnformen (siehe Kapitel 2.4) würde eine Übernachtung in einer Wohnung einen Material Footprint von 39,1 kg pro Person (Durchschnittswohnung) betragen.

Eine Abschätzung zu möglichen Tauschvarianten⁶, die sich unterscheiden, d.h. zwischen Haus-Wohnung bzw. Wohnung-Haus, zeigt absolute Einsparpotenziale. Würden bei allen 100.000 Tausch-

⁵ Annahme: „In Deutschland gibt es bei Homelink ca. 800 Anbieter, bei Haustauschferien ca. 1.200. Tauscht jeder Anbieter einmal im Jahr für 2 Wochen mit 3 Personen ergeben sich so ca. 100.000 Übernachtungen“ (Clausen und Uhr, 2016, 43).

Übernachtungen die eigene Wohnung mit einem Haus getauscht, wäre der MF des Wohnungs-Haustausches um 500.000 kg höher (als ein Tausch mit einer Wohnung). Würden bei allen 100.000 Tausch-Übernachtungen das eigene Haus mit einer Wohnung getauscht, wäre der MF des Haus-Wohnungstausches um 2,5 Mio. kg niedriger (als ein Tausch mit einem Haus).

Insgesamt wäre jedoch das Ressourceneffizienzpotenzial an den gesamten Übernachtungen in der Beherbergungsbranche (436.400.000 Übernachtungen in 2015) sehr gering, d.h. 0,002 % oder 0,1 %. Auch der Vergleich von Wohnungs-/Haustausch mit einer Hotelübernachtung zeigt nur sehr geringe Effekte.

Tabelle 7: Abschätzung von Ressourceneffizienzpotenzialen - Wohnungs- / Haustausch

<table>
<thead>
<tr>
<th>Pro Person</th>
<th>Wohnungs- / Haustausch (gesamt)</th>
<th>Beherbergungsbranche (gesamt)</th>
<th>Quellen und Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übernachtungen (Anzahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahmen-Übernachtungen</td>
<td>1</td>
<td>100.000</td>
<td>436.400.000</td>
</tr>
<tr>
<td>Rahmen-Material Footprint der Übernachtungen</td>
<td>MF in kg pro Anzahl der Übernachtungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchschnittswohnung</td>
<td>39,1</td>
<td>3.908.228</td>
<td></td>
</tr>
<tr>
<td>Ferienhaus</td>
<td>44,1</td>
<td>4.410.000</td>
<td>16.300.874.357</td>
</tr>
<tr>
<td>Hotel</td>
<td>59,3</td>
<td>5.930.000</td>
<td>3.959.203.688</td>
</tr>
<tr>
<td>Summe</td>
<td>-</td>
<td>-</td>
<td>20.260.078.045</td>
</tr>
<tr>
<td>Wohnungs-/Haustausch - Varianten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergleich Wohnung zu Haus</td>
<td>5,0</td>
<td>501.772</td>
<td>0,002%</td>
</tr>
<tr>
<td>Vergleich Wohnung zu Hotel</td>
<td>20,2</td>
<td>2.021.772</td>
<td>0,01%</td>
</tr>
<tr>
<td>Vergleich Haus zu Wohnung</td>
<td>-5,0</td>
<td>-2.517.756</td>
<td>-0,01%</td>
</tr>
<tr>
<td>Vergleich Haus zu Hotel</td>
<td>15,2</td>
<td>1.520.000</td>
<td>0,01%</td>
</tr>
</tbody>
</table>
3.5 Ergebnisse der Ressourcenpotenzialanalyse Reisen

<table>
<thead>
<tr>
<th>Modell</th>
<th>Couchsurfing</th>
<th>Hotel</th>
<th>Flatsharing</th>
<th>Ferienwohnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährliche Zunahme (relativ)</td>
<td>2,14 %</td>
<td>2,00 %</td>
<td>2,14 %</td>
<td>0,31 %</td>
</tr>
<tr>
<td>Jährliche Zunahme (absolut)</td>
<td>145.000</td>
<td>4.020.000</td>
<td>361.000</td>
<td>98.000</td>
</tr>
<tr>
<td>Übernachtungen in 2015</td>
<td>5.800.000</td>
<td>173.895.000</td>
<td>14.500.000</td>
<td>31.410.000</td>
</tr>
<tr>
<td>Übernachtungen in 2030</td>
<td>7.968.000</td>
<td>234.199.000</td>
<td>19.920.000</td>
<td>32.882.000</td>
</tr>
</tbody>
</table>
Das Szenario B ist leicht ressourcenschonender und zeichnet sich dadurch aus, dass die Steigung bzw. die jährliche Zunahme für jede Reisemöglichkeit halbiert wird. Auch die Szenarien für Couchsurfing und Flatsharing arbeiten erstens mit einer Steigung, die gegenüber der Durchschnittssteigung des Szenario A um die Hälfte vermindert ist und zweitens auf einem linearen Wachstum beruht. Die Kennzahlen sind in Tabelle 9 dargestellt.

Tabelle 9: Kennzahlen des Szenario B für die Anzahl an Übernachtungen pro Jahr

<table>
<thead>
<tr>
<th></th>
<th>Couchsurfing</th>
<th>Hotel</th>
<th>Flatsharing</th>
<th>Ferienwohnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährliche Zunahme (relativ)</td>
<td>1,00 %</td>
<td>1,07 %</td>
<td>1,00 %</td>
<td>0,15 %</td>
</tr>
<tr>
<td>Jährliche Zunahme (absolut)</td>
<td>62.000</td>
<td>2.010.000</td>
<td>181.000</td>
<td>49.000</td>
</tr>
<tr>
<td>Übernachtungen in 2015</td>
<td>5.800.000</td>
<td>173.895.000</td>
<td>14.500.000</td>
<td>31.410.000</td>
</tr>
<tr>
<td>Übernachtungen in 2030</td>
<td>6.884.000</td>
<td>204.047.000</td>
<td>17.210.000</td>
<td>32.146.000</td>
</tr>
</tbody>
</table>

Im Szenario B ist innerhalb von 15 Jahren ein Anstieg von 12 auf 14 Mrd. kg zu messen, das entspricht einem relativen Anstieg um weniger als 20 %. Auch hier stammt der Löwenanteil aus den Übernachtungen in Hotels. Der Anteil durch die Übernachtungen in Ferienhäusern, via Flatsharing und Couchsurfing beläuft sich auf knapp 2 Mrd. kg.

Der zeitliche Verlauf ist in Abbildung 16 und Abbildung 17 dargestellt.

Die mittleren jährlichen Änderungen der Materialaufwände von 2015 bis 2030 (Abbildung 18) belaufen sich für das Szenario A für Couchsurfing und Flatsharing auf rund 2,5 %, für die Hotels, während die Ferienhäuser bei einem Anstieg von 0,3 % fast stagnieren. In Szenario B sind die mittleren jährlichen Änderungen um die Hälfte vermindert.

Abbildung 18: Mittlere jährliche Änderungen der Materialaufwände im Zeitraum 2015-2030
3.6 Zusammenfassung

Das Themenfeld Reisen umfasst die zwei NsB-Angebotsformen „Couchsurfing“ und „Flatsharing“, die quantifiziert und denen zwei gängige Reiseformen (Ferienhaus und Hotel) gegenübergestellt werden. Die NsB-Angebotsform "Wohnungs- / Haustausch" wurde nicht quantifiziert.

Der Materialaufwand für eine Übernachtung schwankt zwischen 26,3 und 59,3 kg pro Person. Der höchste Wert wird durch eine Übernachtung im Hotel verursacht, am besten schneidet der Fall Couchsurfing ab. Eine Übernachtung via Flatsharing hat einen Materialaufwand von 32 kg und eine Übernachtung in einem Ferienhaus 44,1 kg.

Der Carbon Footprint für eine Übernachtung liegt zwischen 6,1 und 13,6 kg CO₂. Am schlechtesten schneidet hier das Ferienhaus ab, das Hotel liegt mit 11,2 kg CO₂ knapp vor diesem. Den niedrigsten Wert erreicht erneut Couchsurfing mit 6,1 kg CO₂ gefolgt von der Übernachtung via Flatsharing mit 8,1 kg CO₂.

Um die Ressourceneffizienzpotenziale der beiden NsB-Angebote Couchsurfing und Flatsharing berechnen zu können, wurden zwei Szenarien entwickelt. Szenario A steht für einen ressourcenintensiveren Tourismussektor, der sich vor allen Dingen durch ein Wachstum der Hotellerie auszeichnet. So zeigt die Entwicklung der letzten Jahre, dass sich die Anzahl der Übernachtungen in Hotels und Ferienwohnungen eher linear fortsetzen, während die NsB-Angebotsformen Couchsurfing und Flatsharing eher stark gewachsen sind. Das Szenario B ist leicht ressourcenschonender und zeichnet sich dadurch aus, dass die Steigung bzw. die jährliche Zunahme für jede Reisemöglichkeit halbiert wird. Auch die Szenarien für Couchsurfing und Flatsharing arbeiten erstens mit einer Steigung, die gegenüber der Durchschnittssteigung des Szenario A um die Hälfte vermindert ist und zweitens auf einem linearen Wachstum beruht. In Szenario A steigen die Materialaufwände innerhalb von 15 Jahren von 12 Mrd. kg um rund 30 % auf über 16 Mrd. kg. Im Szenario B ist innerhalb von 15 Jahren ein Anstieg von 12 auf 14 Mrd. kg zu messen, das entspricht einem relativen Anstieg um weniger als 20 %. Couchsurfing und Flatsharing könnten so zu einer Senkung des Ressourcenverbrauchs beitragen, der absolut aber dennoch steigend ist.
4 Literatur

Umweltbundesamt. 2014. „Wassersparen in Privathaushalten: sinnvoll, ausgereizt, übertrieben?“